Skip to main content

Terra Preta Soil Technology

Submitted by erich on
Please look at this low cost alternative CO2 Sequestration system.
The integrated energy strategy offered by Terra Preta Soil technology may
provide the only path to sustain our agricultural and fossil fueled power
structure without climate degradation, other than nuclear power.

I feel we should push for this Terra Preta Soils CO2 sequestration strategy as not only a global warming remedy for the first world, but to solve fertilization and transport issues for the third world. This information needs to be shared with all the state programs.
 
The economics look good, and truly great if we had CO2 cap & trade in place: 
 
These are processes where you can have your Bio-fuel and fertility too.
Terra Preta' soils I feel has great possibilities to revolutionize sustainable agriculture into a major CO2 sequestration strategy.

Superplastic carbon nanotubes

Submitted by Jianyu Huang on

Nature 439, 281 (2006)

The theoretical maximum tensile strain — that is, elongation — of a single-walled carbon nanotube is almost 20%, but in practice only 6% is achieved. Here we show that, at high temperatures, individual single-walled carbon nanotubes can undergo superplastic deformation, becoming nearly 280% longer and 15 times narrower before breaking. This superplastic deformation is the result of the nucleation and motion of kinks in the structure, and could prove useful in helping to strengthen and toughen ceramics and other nanocomposites at high temperatures.

Size-dependent creep behavior of plasma-enhanced chemical vapor deposited silicon oxide films

Submitted by Xin Zhang on

The time-dependent plastic deformation (creep) behaviors of both the as-deposited and annealed plasma-enhanced chemical vapor deposited (PECVD) silicon oxide (SiOx) films were probed by nanoindentation load relaxation tests at room temperature. Our experiments found a strong size effect in the creep responses of the as-deposited PECVD SiOx thin films, which was much reduced after rapid thermal annealing (RTA). Based on the experimental results, the deformation mechanism is depicted by the "shear transformation zone" (STZ) based amorphous plasticity theories. The physical origin of the STZ is elucidated and linked with the shear banding dynamics. It is postulated that the high strain gradient at shallow indentation depths may be responsible for the reduction in the stress exponent n=∂log(strain rate)/∂log(stress), characteristic of a more homogenous flow behavior.

Mechanisms of reversible stretchability of thin metal films on elastomeric substrates

Submitted by splacour on

Gold films on an elastomeric substrate can be stretched and relaxed reversibly by tens of percents. The films initially form in two different structures, one continuous and the other containing tri-branched microcracks. We have identified the mechanism of elastic stretchability in the films with microcracks. The metal, which is much stiffer than the elastomer, forms a percolating network.

We Are Mechanicians

Submitted by Zhigang Suo on

In early days of Applied Mechanics News, I encountered a practical problem. How do we call ourselves? I began with a phrase "people in the international community of applied mechanics". The phrase is inclusive and descriptive, but is too long, too timid and too clumsy. It is like calling entropy "the logarithm of the number of quantum states". I have also heard the phrase "mechanics people", which I don't like either. It sounds too folksy, like calling a gynecologist a women's doctor.

What can mechanicians do in fusion research?

Submitted by Yixiang Gan on

More than fifty years ago, people realized that we can use fusion for energy, but the problem remains where and how to keep a plasma of 100 million degrees centigrade.

For TOKAMAK, one of the approaches to use the fusion power, now comes the news: "On 21 November, Ministers from the seven ITER Parties came together to sign the agreement to establish the international Organization that will implement ITER."

The Future of Cell Phone?

Submitted by Teng Li on

Here is one answer from Nokia.


Nokia 888 communicator, a concept design which recently won the Nokia's Benelux Design Award. It uses liquid battery, flexible touch display, speech recognition, touch sensitive body cover which lets it understand and adjust to the environment. It has a simple programmable body mechanism so that it changes forms in different situations. Don't forget to enjoy a video demo of this cell phone of future.
Yet one more future application of flexible electronics, it's clear there're great mechanics and materials challenges in making electronic devices flexible. It will be great mechanicians can help accelerate the advance of this emerging technology.

The 2nd International Conference on Heterogeneous Material Mechanics (ICHMM-2008)

Submitted by Changguo Xue on

ICHMM 2008 seeks dissemination of recent, leading edge research results as well as in-depth discussions of future directions in the challenging subject of heterogeneous material mechanics. Sessions in the Huangshan International Hotel will focus on recent original research developments, while invited panel discussins in the subsequent Huangshan Mountain retreat aim to stimulate future research directions.

Co-Chairs

J. Fan, Alfred University, USA and Chongqing University

The topics of interest are:

Elastic model for proteins (polymers)

Submitted by Kilho Eom on

There has been a lot of attention on the study of mechanics of proteins and/or single molecules. Such study was typically implemented by using classical molecular dynamics (MD) simulation. In spite of ability to describe the dynamics of biological macromolecules (e.g. proteins), MD simulation exhibits the computational restriction in the spatial and temporal scale. In order to overcome such computational limitation, the coarse-grained model has recently been taken into account. In this review, I would take a look at a couple of coarse-grained models of protein molecules.