User login

Navigation

You are here

Elastic instability

Article: A frequency-independent second-order framework for the formulation of experimental fluidelastic forces using hidden flow variables

The importance of fluidelastic forces in flow-excited vibrations is crucial, in view of their damaging potential. Flow-coupling coefficients are often experimentally obtained from vibration experiments, performed within a limited experimental frequency range. For any given flow velocity, these coefficients are typically frequency-dependent, as amply documented in the literature since the seminal work of Tanaka and Takahara.

Article: A new criterion for the instability threshold of a square tube bundle subject to an air-water cross-flow

We investigate the fluid-elastic instability of a square tube bundle subject to two-phase cross-flow. A dimensional analysis is carried out, leading to a new criterion of instability. This criterion establishes a direct link with the instability thresholds in single-phase flows. In parallel to the dimensional analysis, experimental work is carried out to i) determine the instability thresholds in single-phase flows (new relation between the Scruton, Stokes and Reynolds number), ii) to test the validity of the two-phase flow instability criterion, derived from the dimensional analysis.

Joshua's picture

Coupling of a magnetic field with instability

A bistable curved beam with magnetic torque-driven actuation has the potential for fast and untethered reconfiguration of metamaterials. However, no modeling method of a bistable curved beam whose instability is coupled with an external magnetic field for the design of active metamaterials. A bistable curved beam's second mode (S-shape) generation is essential for a multimodal and multistep reconfiguration of metamaterials, which was not explored before.

Fan Xu's picture

Special Issue on Instability and Bifurcation in Materials and Structures comes out

Dear Colleagues,

After one-year effort, we are happy to announce that the SI on Instability and Bifurcation in Materials and Structures is now completed and comes out online (https://www.sciencedirect.com/journal/international-journal-of-non-linear-mechanics/special-issue/1089TRQ46GQ).

Qihan Liu's picture

Elastocapillary Crease

Please find our new publication in Physical Review Letters on Elastocapillar Crease. This paper has been highlighted by Editors Suggestion.

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.098003

ABSTRACT

Subscribe to RSS - Elastic instability

Recent comments

More comments

Syndicate

Subscribe to Syndicate