The importance of fluidelastic forces in flow-excited vibrations is crucial, in view of their damaging potential. Flow-coupling coefficients are often experimentally obtained from vibration experiments, performed within a limited experimental frequency range. For any given flow velocity, these coefficients are typically frequency-dependent, as amply documented in the literature since the seminal work of Tanaka and Takahara.
We investigate the fluid-elastic instability of a square tube bundle subject to two-phase cross-flow. A dimensional analysis is carried out, leading to a new criterion of instability. This criterion establishes a direct link with the instability thresholds in single-phase flows. In parallel to the dimensional analysis, experimental work is carried out to i) determine the instability thresholds in single-phase flows (new relation between the Scruton, Stokes and Reynolds number), ii) to test the validity of the two-phase flow instability criterion, derived from the dimensional analysis.
Failure pressure for Steam generator tube having 2 axial cracks. I am following one paper in that paper they found failure pressure by finding J and K values for line spring elements for different pressure. The pressure at which it approach material JIC(92N/mm) and KIC(65Mpa*sqrt(m)) value is considered as failure pressure or coalescence pressus
Hello, All I am trying to model steam generator tube of length 110 , radius 11mm, thickness 1.27mm. It has 2 axial cracks of length 6.35mm. length between 2 cracks is 0.254mm.
Recent comments