Skip to main content

research

In-situ measurements of stress evolution in composite sulfur cathodes

Submitted by Matt Pharr on

Owing to their enormous capacities, Li-S batteries have emerged as a prime candidate for economic and sustainable energy storage. Still, potential mechanics-based issues exist that must be addressed: lithiation of sulfur produces an enormous volume expansion (~80%). In other high capacity electrodes, large expansions generate considerable stresses that can lead to mechanical damage and capacity fading.

ParaDis : Discrete Dislocation Dynamics Simulation

Submitted by noushadbinjamal on
Choose a channel featured in the header of iMechanica

Forum to discuss all about use of ParaDis in discrete dislocation dynamics simulation

 

Interface-Governed Deformation of Nanobubbles and Nanotents Formed by Two-Dimensional Materials

Submitted by Zhaohe Dai on

In this paper, we experimentally characterize a simple and unified power law for the profiles of a variety of nanobubbles and nanotents formed by 2D materials such as graphene and MoS2 layers. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.266101

ABSTRACT

Optimal-Feedback Accelerated Picard Iteration Method and a Fish-Scale Growing Method for Wide-Ranging and Multi-Revolution Perturbed Lambert's Problems

Submitted by Xuechuan Wang on

Wide-ranging and multiple-revolution perturbed Lambert’s problems are building blocks for practical missions such as development of cislunar space, interplanetary navigation, orbital rendezvous, etc. However, it is of a great challenge to solve these problems both accurately and efficiently, considering the long transfer time and the complexity of high-fidelity modeling of space environment. For that, a methodology combining Optimal-Feedback Accelerated Picard Iteration methods and Fish-Scale Growing Method is demonstrated.

A review on modeling of electro-chemo-mechanics in lithium-ion batteries

Submitted by Peter Stein on

Investigations on the fast capacity loss of Lithium-ion batteries (LIBs) have highlighted a rich field of mechanical phenomena occurring during charging/discharging cycles, to name only a few, large deformations coupled with nonlinear elasticity, plastification, fracture, anisotropy, structural instability, and phase separation phenomena. In the last decade, numerous experimental and theoretical studies have been conducted to investigate and model these phenomena.

On the wrinkling and restabilization of highly stretched sheets

Submitted by Fan Xu on

Wrinkles are commonly observed in uniaxially stretched rectangular sheets with clamped-clamped boundaries, and can disappear upon excess stretching. Here we explore this wrinkling and restabilization behavior both analytically and numerically. We find that Poisson’s ratio plays a crucial role in the wrinkling and restabilization behavior. Smaller Poisson’s ratio makes later onset of wrinkling, lower amplitude and earlier disappearance of wrinkles.

Multifunctional “Hydrogel Skins” on Diverse Polymers with Arbitrary Shapes

Submitted by hyunwoo on

In this paper, we introduce a new simple yet effective strategy to form "hydrogel skins" on polymer-based medical devices with arbitrary shapes. Hydrogel skins can convert any surface of polymer devices into robust, wet, soft, slippery, antifouling, and ionically conductive without affecting the original properties and geometries.

Abstract