Skip to main content

Blog posts

Crack initiation and propagation using ANSYS Software

Submitted by mahesh4319 on

I'm working on Crack initiation and propagation in Gravity dams using ANSYS Software.


I'm finding out crack path in the software.So far I've done seismic analysis and located the most vulnerable places for crack formation and possible length of crack. I'm not aware of modelling the crack and finding out its path.  So, I'm requesting you to help in establishing the procedure in ANSYS. 

Please give me some guidance.

please send me any journals, videos and study material which would be helpful.

Fracture Mechanics Parameters Calculation

Submitted by mahesh4319 on
I'm working on Fracture Mechanics of Gravity dams using ANSYS Software.
 
I'm finding out the fracture mechanics parameters SIF, Energy release rate, J-integral etc..
So far I learned finding out SIF. I couldn't able to find the remaining fracture mechanics parameters like energy release rate, J-integral etc.. 
 
S, I'm requesting you to help in establishing procedure to find out J-integral in ANSYS.
 

PhD Position in 'Intelligent design of 2D nanostructures based on molybdenum' project

Submitted by mmazdz on

Two PhD students will be engaged in a research project of National Science Centre (NCN) carried out in the Institute of Fundamental Technological Research PAS, Poland on 'Intelligent design of 2D nanostructures based on molybdenum'.  The materials with a 2D atomic structure (flat, one layer) have drawn attention of researchers for years. The practical applications of graphene sheets, nanotubes can be observed in many areas from electronic industry up to civil engineering (e.g. concrete with nanotubes fillers).

Finite element approximation of the fields of bulk and interfacial line defects

Submitted by Chiqun Zhang on

Chiqun Zhang            Amit Acharya            Saurabh Puri

A generalized disclination (g.disclination) theory [AF15] has been recently introduced that goes beyond treating standard translational and rotational Volterra defects in a continuously distributed defects approach; it is capable of treating the kinematics and dynamics of terminating lines of elastic strain and rotation discontinuities. In this work, a numerical method is developed to solve for the stress and distortion fields of g.disclination systems. Problems of small and finite deformation theory are considered. The fields of a single disclination, a single dislocation treated as a disclination dipole, a tilt grain boundary, a misfitting grain boundary with disconnections, a through twin boundary, a terminating twin boundary, a through grain boundary, a star disclination/penta-twin, a disclination loop (with twist and wedge segments), and a plate, a lenticular, and a needle inclusion are approximated. It is demonstrated that while the far-field topological identity of a dislocation of appropriate strength and a disclination-dipole plus a slip dislocation comprising a disconnection are the same, the latter microstructure is energetically favorable. This underscores the complementary importance of all of topology, geometry, and energetics in understanding defect mechanics. It is established that finite element approximations of fields of interfacial and bulk line defects can be achieved in a systematic and routine manner, thus contributing to the study of intricate defect microstructures in the scientific understanding and predictive design of materials. Our work also represents one systematic way of studying the interaction of (g.)disclinations and dislocations as topological defects, a subject of considerable subtlety and conceptual importance [Mer79, AMK17].

Feedback-Accelerated Picard Iteration for Orbit Propagation and Lambert’s Problem

Submitted by Xuechuan Wang on

This paper presents a new Feedback-Accelerated Picard Iteration method for solving long-term orbit propagation problems and perturbed Lambert’s problems. This method is developed by combining the collocation method and the variational iteration method over large-time-steps. The resulting iterative formulae are explicitly derived so that they can be directly adopted to solve problems in orbital mechanics. Several typical orbit regimes incorporating high-order gravity and air drag force are used to demonstrate the application of the proposed method in orbit propagation.

Postdoc seeking in field of Mechanical or Materials Science Engineering

Submitted by lifeiwang on

My name is Lifei Wang, from China. I am 28 years old, and I have been finished my P.H.D degree in July 2015.   Now I'm looking for a postdoc research position in the field of Mechanical or Material Science Engineering. 

PhD Position in Polymer composites and cellulose nanomaterials

Submitted by amir.asadi on

One PhD position is available in manufacturing of polymer composites integrating cellulose nanomaterials at the department of Mechanical Engineering at Texas A&M University. The start date is January 2018.

Eligibility

Successful candidates are expected to have

Thematic session on Contact Mechanics @ EMMC 2018, Nantes

Submitted by marco.paggi on

Abstract submission for the European Mechanics of Materials Conference (Nantes, 26-28 March 2018) is open, with deadline at the end of September 2017.

https://emmc16.sciencesconf.org/resource/page/id/8

Contributions are welcome for the following thematic session organized by Marco Paggi (IMT Lucca) and Jean-Francois Molinari (EPFL):

Mini-Symposium ''Reaction Diffusion Problems in Mechanics'' @ ESMC 2018

Submitted by marco.paggi on
 
Abstract submission for the 10th European Solid Mechanics Conference (EUROMECH), Bologna (Italy), 2-6 July 2018, is now open, with deadline the 15th of November 2017.
 
 
 

PhD Position (4 years) in Experimental Study of Nano-Composites

Submitted by Anton Trofimov on

PhD Position (4 years) in Experimental Study of Nano-Composites

Center for Design, Manufactirung, and Materials, Skoltech, invites applications for a PhD position in Experimental Study of Nano Composites, starting in November 2017.