Skip to main content

Blog posts

Materials Impact on Interconnects Process Technology and Reliability

Submitted by Jun He on

M.A. Hussein and Jun He (Intel Corporation)

IEEE Transactions on Semiconductor Manufacturing, vol. 18, No. 1, p.69-85, 2005

In this work, we explain how the manufacturing technology and reliability for advanced interconnects is impacted by the choice of metallization and interlayer dielectric (ILD) materials. The replacement of aluminum alloys by copper, as the metal of choice at the 130nm technology node, mandated notable changes in integration, metallization, and patterning technologies. Those changes directly impacted the reliability performance of the interconnect system. Although further improvement in interconnect performance is being pursued through utilizing progressively lower dielectric constant (low-k) ILD materials from one technology node to another, the inherent weak mechanical strength of low-k ILDs and the potential for degradation in the dielectric constant during processing, pose serious challenges to the implementation of such materials in high volume manufacturing. We will consider the cases of two ILD materials; carbon-doped silicon dioxide (CDO) and low-k spin-on-polymer to illustrate the impact of ILD choice on the process technology and reliability of copper interconnects. preprint pdf 2.49 MB


A PROBABILISTIC MECHANICS APPROACH TO DIE CRACKING

Submitted by Jie-Hua Zhao on

Flip-chip plastic ball grid array (FC-PBGA) packages are widely used in high performance components. However, its die back is normally under tensile stress at low temperatures. This paper presents a probabilistic mechanics approach to predict the die failure rate in the FC-PBGA qualification process. The methodology consists of three parts:

Microstructure-based Stress Modeling of Tin Whisker Growth

Submitted by Jie-Hua Zhao on

Jie-Hua Zhao, Peng Su, Min Ding, Sheila Chopin, and Paul S. Ho

A 3-dimensional finite element method (FEM) model considering the elasticity anisotropy, thermal expansion anisotropy and plasticity of β-Sn is established. The Voronoi diagrams are used to generate the geometric patterns of grains of the Sn coating on Cu leadframes. The crystal orientations are assigned to the Sn grains in the model using the x-ray diffraction (XRD) measurement data of the samples. The model is applied to the Sn-plated package leads under thermal cycling tests. The strain energy density (SED) is calculated for each grain. It is observed that the samples with higher calculated SED are more likely to have longer Sn whiskers and higher whisker density. The FEM model, combined with the XRD measurement of the Sn finish, can be used as an effective indicator of the Sn whisker propensity. This may expedite the qualification process significantly.

Indentation: A widely used technique for measuring mechanical properties

Submitted by Manhong Zhao on

Indentation is one of the most widely used techniques of measuring mechanical properties of materials, especially for materials of small volume. In micro- or nano- scales, performing traditional tests such as the tension test and bending test becomes less feasible because of the nontrivial task of sample preparation. In contrast, by using the indentation technique, the difficulty of sample preparation may be dramatically reduced. On the other hand, indentation test is not a direct measurement and advanced mechanics analysis is needed to correlate the material properties with the indentation response. 

In an indentation test, a hard tip is pressed into a sample. The tip can be sharp or spherical. After the tip is removed, an impression is left. The hardness is defined as the indentation load divided by the projected area of impression. Moreover, by means of instrumental indentation testers, the indentation load and indentation depth can be continuously and simultaneously measured. Many models have been developed to extract the material properties from the recorded indentation load-depth curve, including the elastic modulus, yield stress, strain hardening coefficient, residual stress, fracture toughness, etc. 

The Effect of Water Diffusion on the Adhesion of Organosilicate Glass Film Stacks

Submitted by Anonymous (not verified) on

Ting Y. Tsui, Andrew J. McKerrow, and Joost J. Vlassak

Published in the Journal of The Mechanics and Physics of Solids, 54 (5), 887-903 (2006)

Abstract – Organosilicate glass (OSG) is a material that is used as a dielectric in advanced integrated circuits. It has a network structure similar to that of amorphous silica where a fraction of the Si-O bonds has been replaced by organic groups. It is well known from prior work that OSG is sensitive to subcritical crack growth as water molecules in the environment are transported to the crack tip and assist in rupturing Si-O bonds at the crack tip. In this study, we demonstrate that exposure of an OSG containing film stack to water prior to fracture results in degradation of the adhesion of the film stack. This degradation is the result of the diffusion of water into the film stack. We propose a quantitative model to predict adhesion degradation as a function of exposure time by coupling the results of independent subcritical crack growth measurements with diffusion concentration profiles. The model agrees well with experimental data and provides a novel method for measuring the water diffusion coefficient in film stacks that contain OSG. This study has important implications for the reliability of advanced integrated circuits.

Deformation of the cell nucleus under indentation: Mechanics and Mechanisms

Submitted by Ashkan Vaziri on

Computational models of the cell nucleus, along with experimental observations, can help in understanding the biomechanics of force-induced nuclear deformation and mechanisms of stress transition throughout the nucleus. Here, we develop a computational model for an isolated nucleus undergoing indentation, which includes separate components representing the nucleoplasm and the nuclear envelope. The nuclear envelope itself is composed of three separate layers: two thin elastic layers representing the inner and outer nuclear membranes and one thicker layer representing the nuclear lamina. The proposed model is capable of separating the structural role of major nuclear components in the force-induced biological response of the nucleus (and ultimately the cell). A systematic analysis is carried out to explore the role of major individual nuclear elements, namely inner and outer membranes, nuclear lamina, and nucleoplasm, as well as the loading and experimental factors such as indentation rate and probe angle, on the biomechanical response of an isolated nucleus in atomic force microscopy indentation experiment.

Mini-symposium on “Computational Methods in Impact Engineering” in Ninth U.S. National Congress on Computational Mechanics

Submitted by Ashkan Vaziri on

The aim of the “Computational Methods in Impact Engineering” mini-symposium is to recognize the increasing role of the computation methods in Impact Engineering. It is now established that computational tools are indispensable to augment experimental techniques for the analysis of complex systems under dynamic loading. Many new computational techniques are currently being developed and new applications in the fields of impact and shock loadings are emerging. This mini-symposium will bring together engineers and scientists working in the area of Computational Impact Engineering.

Topics of interest include (but are not restricted to) the following:

Microcantilever for biomolecular detections

Submitted by Kilho Eom on

Microcantilevers have taken much attention as devices for label-free detection of molecules and/or their conformations in solutions and air. Recently, microcantilevers have allowed the nanomechanical mass detection of thin film [1-3], small molecules [4, 5], and biological components such as viruses [6] and vesicles [7] in the order of a pico-gram to a zepto-gram. The great potential of microcantilevers is the sensitive, reliable, fast label-free detection of proteins and/or protein conformations. Specifically, microcantilevers are capable of label-free detection of marker proteins related to diseases, even at a low concentration in solution [8-17]. Microcantilevers, operated in a viscous fluid, have also enabled the real-time monitoring of protein-protein interactions [8, 12-15]. Furthermore, microcantilevers are able to recognize the specific protein conformations [18] and/or reversible conformation changes of proteins/polymers [19, 20].

Associate or Assistant Professor -- Experimental Mechanics of Materials

Submitted by Anonymous (not verified) on

The Department of Mechanical Engineering at the University of Wyoming invites applications for a tenure-track faculty position. Applicants are sought at the Associate or Assistant Professor level with expertise in experimental mechanics and particularly in emerging areas of science and technology. Such areas include but are not limited to the study of biomaterials, tissue engineering, nanomechanics of engineering materials, as well as thin films and multilayers, fracture, fatigue and damage.

The successful applicant will be expected to establish a strong, funded research program, as well as teach at the graduate and undergraduate levels. She/He will be expected to participate in interdisciplinary research efforts both within and outside the College of Engineering. Minimum qualifications include an earned doctorate in mechanical engineering, materials science/engineering, or a closely related field.