Electrical–thermal–mechanical interactions determine the reliability and performance of microelectromechanical devices and systems.
Using the nanoindentation technique the effect of an electric current on the indentation deformation of Sn strips was studied for an
indentation load in the range 50–200 lN. During the indentation an electric current density in the range 993.05–4087.89 A cm2
was
passed through the Sn strips, which introduced electrical–thermal–mechanical interactions. The experimental results showed that the
Recent comments