Nonlinear Anisotropic Viscoelasticity
In this paper we revisit the mathematical foundations of nonlinear viscoelasticity.
In this paper we revisit the mathematical foundations of nonlinear viscoelasticity.
In this paper we formulate and solve the initial-boundary value problem of accreting circular cylindrical bars under finite extension. We assume that the bar grows by printing stress-free cylindrical layers on its boundary cylinder while it is undergoing a time-dependent finite extension. Accretion induces eigenstrains, and consequently residual stresses. We formulate the anelasticity problem by first constructing the natural Riemannian metric of the growing bar. This metric explicitly depends on the history of deformation during the accretion process.
In this paper we formulate the initial-boundary value problem of accreting circular cylindrical bars under finite torsion. It is assumed that the bar grows as a result of printing stress-free cylindrical layers on its boundary while it is under a time-dependent torque (or a time-dependent twist) and is free to deform axially. In a deforming body, accretion induces eigenetrains, and consequently residual stresses. We formulate the anelasticity problem by first constructing the natural Riemannian metric of the growing bar.
The recent literature of finite eignestrains in nonlinear elastic solids is reviewed, and Eshelby's inclusion problem at finite strains is revisited. The subtleties of the analysis of combinations of finite eigenstrains for the example of combined finite radial, azimuthal, axial, and twist eigenstrains in a finite circular cylindrical bar are discussed. The stress field of a spherical inclusion with uniform pure dilatational eigenstrain in a radially-inhomogeneous spherical ball made of arbitrary incompressible isotropic solids is analyzed.
In this paper we analyze the stress field of a solid torus made of an incompressible isotropic solid with a toroidal inclusion that is concentric with the solid torus and has a uniform distribution of pure dilatational finite eigenstrains. We use a perturbation analysis and calculate the residual stresses to the first order in the thinness ratio (the ratio of the radius of the generating circle and the overall radius of the solid torus). In particular, we show that the stress field inside the inclusion is not uniform.
The elastic Ericksen's problem consists of finding deformations in isotropic hyperelastic solids that can be maintained for arbitrary strain-energy density functions. In the compressible case, Ericksen showed that only homogeneous deformations are possible. Here, we solve the anelastic version of the same problem, that is we determine both the deformations and the eigenstrains such that a solution to the anelastic problem exists for arbitrary strain-energy density functions. Anelasticity is described by finite eigenstrains.
In this paper we are concerned with finding exact solutions for the stress fields of nonlinear solids with non-symmetric distributions of defects (or more generally finite eigenstrains) that are small perturbations of symmetric distributions of defects with known exact solutions. In the language of geometric mechanics this corresponds to finding a deformation that is a result of a perturbation of the metric of the Riemannian material manifold. We present a general framework that can be used for a systematic analysis of this class of anelasticity problems.
We introduce some Hilbert complexes involving second-order tensors on flat compact manifolds with boundary that describe the kinematics and the kinetics of motion in nonlinear elasticity. We then use the general framework of Hilbert complexes to write Hodge-type and Helmholtz-type orthogonal decompositions for second-order tensors.