Skip to main content

biomechanics

PhD Position: Solid Mechanics/Biomechanics at KTH-Stockholm

Submitted by Gerhard Holzapfel on

PhD Position: Solid Mechanics/Biomechanics at KTH-Stockholm

A four to five-year PhD position focusing on the analysis of multi-scale phenomena in diseased blood vessels including atherosclerotic plaques has recently been opened at KTH Solid Mechanics. The position is fully supported by the Swedish Research Council.

Issue 2 of J. Mechanical Behavior of Biomedical Materials published

Submitted by Dean Eastbury on

I am pleased to announce that Volume 1, Number 2 of the the recently-launched Journal of the Mechanical Behavior of Biomedical Materials (www.elsevier.com/locate/jmbbm) has been published by Elsevier. All JMBBM articles can be accessed free-of-charge on ScienceDirect until September 2008 (http://www.sciencedirect.com/science/journal/17516161).

Mechanics of growth and rupture of abdominal aortic aneurysm

Submitted by Konstantin Volokh on

We present a coupled mathematical model of growth and failure of the abdominal aortic aneurysm (AAA). The failure portion of the model is based on the constitutive theory of softening hyperelasticity where the classical hyperelastic law is enhanced with a new constant indicating the maximum energy that an infinitesimal material volume can accumulate without failure. The new constant controls material failure and it can be interpreted as the average energy of molecular bonds from the microstructural standpoint.

Mechanics of microtubule buckling in living cells

Submitted by Teng Li on

As the most rigid cytoskeletal filaments, microtubules bear compressive forces in living cells, balancing the tensile forces within the cytoskeleton to maintain the cell shape. It is often observed that, in living cells, microtubules under compression severely buckle into short wavelengths. By contrast, when compressed, isolated microtubules in vitro buckle into single long-wavelength arcs. The critical buckling force of the microtubules in vitro is two orders of magnitude lower than that of the microtubules in living cells.