Skip to main content

Plasticity

Strain Gradient Plasticity

Submitted by Rashid K. Abu Al-Rub on

Recently, there have been many strain gradient theories that are used for the interpretation of size effect at the micron and submicron length scales. The basic idea of these theories is the introduction of a first, or second (or both) gradients of strain or any internal state variable in the governing equations of classical theories.

Super stretchy carbon nanotubes

Submitted by Jianyu Huang on

Huang et al., PRL 98, 185501 (2007)

Watch movies at: http://netserver.aip.org/cgi-bin/epaps?ID=E-PRLTAO-98-002719

We report exceptional ductile behavior in individual double-walled and triple-walled carbon nanotubes at temperatures above 2000 C, with tensile elongation of 190% and diameter reduction of 90%, during in situ tensile-loading experiments conducted inside a high-resolution transmission electron microscope. Concurrent atomic-scale microstructure observations reveal that the superelongation is attributed to a high temperature creep deformation mechanism mediated by atom or vacancy diffusion, dislocation climb, and kink motion at high temperatures. The superelongation in double-walled and triple-walled carbon nanotubes, the creep deformation mechanism, and dislocation climb in carbon nanotubes are reported here for the first time.

A spectral decomposition problem

Submitted by Biswajit Banerjee on
Choose a channel featured in the header of iMechanica

This post is both a question and a test how well Latex2HTML performs. The algebra might be useful for students who are starting off in the field. Please go through the details and comment on the question at the end of the post.

Which phenomenological flow stress model is the best?

Submitted by Biswajit Banerjee on

A couple of years ago a colleague who wanted to simulate high-speed machining asked me: " Which is the best phenomenological flow stress model for metals?" I wasn't able to give an answer right away and decided to look in the literature.

What I found was, every ten years or so, a new model appears in the literature that tries to solve some of the problems of older models. However, a clear ranking of models has not been established yet.

friction and plasticity: new avenues of research?

Submitted by Mike Ciavarella on
Choose a channel featured in the header of iMechanica

Based on some recent results by Anders Klabring, myself and Jim Barber, showing rigorously that Melan’s theorem only works for a very restricted class of frictional problems, we suggest possible ave

review on KLJ's most loved areas in contact mechanics

Submitted by Mike Ciavarella on
Choose a channel featured in the header of iMechanica

If we read Ken Johnson’s Timoshenko medal 2006 speech also posted in iMechanica, the subjects Ken mentions in his brief and humorous speech are:-

  1. corrugation of railway rails,
  2. the damping at clamped joints,
  3. Hertz contact under the action of tangential friction forces,
  4. ‘tribology' (word invented by David Tabor along with F.P.Bowden in Cambridge),
  5. Atomic Force Microscope, Surface Force Apparatus & friction on the atomic scale,
  6. Relation between adhesion and friction.

These are probably the subjects Ken is most attached to. Some are older (but perhaps not solved, lke corrugation, for which the “short-pitch” fixed wavelength mechanism is still unclear despite Ken’s 40 years of efforts (!), and some are certainly fashionable today (like adhesion and friction at atomic scale). In starting this forum, why not start from here? Should we prepare a 1 page summary on each of these topics? Since I start this, I will do the effort on corrugation I promise in the next week or so!

Regards, Mike