Skip to main content

research

Brittle‑to‑ductile transitions in glasses: Roles of soft defects and loading geometry

Submitted by Eran Bouchbinder on

Understanding the fracture toughness of glasses is of prime importance for

science and technology. We study it here using extensive atomistic simulations in

which the interaction potential, glass transition cooling rate, and loading geometry

are systematically varied, mimicking a broad range of experimentally accessible

properties. Glasses’ non-equilibrium mechanical disorder is quantified through

Ag, the dimensionless prefactor of the universal spectrum of non-phononic

Inverse design of 3D reconfigurable architected materials

Submitted by Joshua on

We developed an inverse design method for constructing 3D reconfigurable architected structures — we synthesized modular origami structures whose unit cells can be volumetrically mapped into a prescribed 3D curvilinear shape followed by volumetric shrinkage for constructing modules. After modification of tubular geometry, we searched modular origamis’ geometry and topology for target mobility using a topological reconstruction of modules.

Dynamic Equilibrium Equations in Unified Mechanics Theory

Submitted by Hsiao-Wei Lee on

Traditionally dynamic analysis is done using Newton’s universal laws of the equation of motion. According to the laws of Newtonian mechanics, the x, y, z, space-time coordinate system does not include a term for energy loss, an empirical damping term “C” is used in the dynamic equilibrium equation. Energy loss in any system is governed by the laws of thermodynamics. Unified Mechanics Theory (UMT) unifies the universal laws of motion of Newton and the laws of thermodynamics at ab-initio level.

Predicting high cycle and ultrasonic vibration fatigue with unified mechanics theory

Submitted by Hsiao-Wei Lee on

The unified mechanics theory (UMT) is ab-initio unification of the second law of thermodynamics and Newton's universal laws of motion, in which Boltzmann's second law of entropy formulation governs dissipation & degradation. Hence, the unified mechanics theory does not require any empirical dissipation & degradation potential function or an empirical void evolution function. Material degradation is quantified on the Thermodynamic state index (TSI) axis based on the specific entropy production, which starts at zero and asymptotically approaches one at failure.

Modeling fatigue of pre-corroded metals with unified mechanics theory

Submitted by Hsiao-Wei Lee on

The unified mechanics theory (UMT) was used to develop a model to predict the fatigue life of pre-corroded steel samples with BCC structure. Details of the experimental validation are also provided.

https://doi.org/10.1016/j.matdes.2022.111383

Peeling by pulling: In situ SEM blister test on nanoflakes

Submitted by Zhaohe Dai on

Dear iMechanicians,

I want to share our recent work published in Nano Letters on the blister test of nanoflakes. The title, abstract, and links for data are as follows:

Pull-to-Peel of Two-Dimensional Materials for the Simultaneous Determination of Elasticity and Adhesion 

Zheng Fang, Zhaohe Dai*, Bingjie Wang, Zhongzheng Tian, Chuanli Yu, Qing Chen, and Xianlong Wei*

Wrinkling of twisted thin films

Submitted by Fan Xu on

Thin films usually exhibit instabilities and yield intricate wrinkles when two clamped ends are twisted. Here, we explore the wrinkling behavior and pitch-fork bifurcation of twisted thin films experimentally and theoretically. To quantitatively predict the post-buckling evolution of twist-induced wrinkling morphology, we develop a refined finite-strain plate model derived from 3D field equations and then solve it by using the finite element method with COMSOL. We examine the effects of aspect ratios and pre-tension on the wrinkling profile.

Coupling of a magnetic field with instability

Submitted by Joshua on

A bistable curved beam with magnetic torque-driven actuation has the potential for fast and untethered reconfiguration of metamaterials. However, no modeling method of a bistable curved beam whose instability is coupled with an external magnetic field for the design of active metamaterials. A bistable curved beam's second mode (S-shape) generation is essential for a multimodal and multistep reconfiguration of metamaterials, which was not explored before.