Skip to main content

cell mechanics

Living cells behave as fluid-filled sponges

Submitted by emadmoeen on
Animal cells behave like fluid-filled sponges in response to being mechanically deformed according to new research published in Nature Materials.

Scientists from the London Centre for Nanotechnology at UCL have shown that animal cells behave according to the theory of ‘poroelasticity’ when mechanically stimulated in a way similar to that experienced in organs within the body. The results indicate that the rate of cell deformation in response to mechanical stress is limited by how quickly water can redistribute within the cell interior.

On Tensegrity in Cell Mechanics

Submitted by Konstantin Volokh on

All models are wrong, but some are useful. This famous saying mirrors the situation in cell mechanics as well. It looks like no particular model of the cell deformability can be unconditionally preferred over others and different models reveal different aspects of the mechanical behavior of living cells. The purpose of the present work is to discuss the so-called tensegrity models of the cell cytoskeleton. It seems that the role of the cytoskeleton in the overall mechanical response of the cell was not appreciated until Donald Ingber put a strong emphasis on it.

2011 International Dictyostelium Conference, August 14-18, Baltimore, MD USA

Submitted by Tian Zhi Luo on

The annual International Dictyostelium Conference will be held in Baltimore, MD USA from August 14 to 18. Dictyostelium has been extensively used as a model organism for the study of cell mechanics, motility, chemotaxis, cell division and other biological events that involve cell shape change and the mechanical behaviors of cells. In this coming meeting, there will be 70 oral presentations and 100 posters covering above topics.

http://dicty11.dictybase.org

 

Simple Cell Traction Force Script for Elastic Micropatterned Substrata

Submitted by srp215 on

Hi readers, 

 This is MATLAB code that was written by myself and collaborators that we've sought to make available to the wider research community. The program is intended to track the displacements of micropatterned dots on a substrate in a similar manner to that performed by  Maloney et al. in "Influence of Finite Thickness on cellular adhesion-induced deformation of an compliant substrata". Physical Review E. 2008.

Chair in Cell Mechanics

Submitted by Chris W Smith on

Chair in Cell Mechanics, University of Exeter

The University of Exeter
is significantly expanding its capacity in Science and Engineering, with 275 million
GBP (approx 440M USD) capital spend on campus and 80M GBP (130M USD) on new academic staff.

The university seeks to employ two new chairs in i) cell mechanics and ii) physical cell biology. Research areas of interest for the chair in cell mechanics might include computational fluid or solid mechanics.