Evaluation of Wave Barriers on Ground Vibration Reduction through Numerical Modeling in Abaqus
This paper aims to investigate the train-induced ground vibration and appropriate
This paper aims to investigate the train-induced ground vibration and appropriate
Compared with response spectrum method and the pushover method, Elasto-plastic dynamic time-history analysis method is considered to be a more accurate seismic analysis method. Because of Abaqus’s strong non-linear calculation function, the software makes it possible for the method mentioned above to be applied. Elasto-plastic dynamic analysis on complex structures using Abaqus has a rapid development in China.
The connected structure refers to the kind of building which is composed of two or more
towers connected by the connecting body in a certain height, belonging to the irregular building
structure system. According to “Technical Specification for Concrete Structures of Tall Building”
During the BIW concept developing phase, some key design variables, such as rails and pillars width and position, shell thickness, etc, and multi-attribute responses from safety, NVH, and durability are considered to explore the design space. Isight DOE design drive is used to assess the impact of the variables on the objectives, and this helps the engineer to better understand the design space and give design recommendation. Approximations component is used sequentially to create fast-running surrogate models to replace the real CAE simulations.
In dynamic analysis of NPP civil structures the most suitable method proved to be the method of direct integration of equations of motion of the structure-soil system. This method takes account of geometrically nonlinear effects and dashpots with high level of attenuation. In addition, this method allows for receiving a highly effective solution for some types of NPP civil structures. However, the analysis of resultant response spectra has showed a high level of spectral accelerations at elevations of equipment arrangement.
A software tool for automated crack onset and growth simulations based on the eXtended Finite Element Method (X-FEM) has been developed. For the first time, this tool is able to simulate arbitrary crack growth and composite delamination without remeshing. The automated tool is integrated with Abaqus/Standard and Abaqus/CAE via the customization interfaces. It seamlessly works with the Commercial, Off-The-Shelf (COTS) Abaqus suite.
The relationships between a resistance curve (R-curve), the corresponding fracture process zone length, the shape of the traction/displacement softening law, and the propagation of fracture are examined in the context of the through-the-thickness fracture of composite laminates. A procedure that accounts for R-curve toughening mechanisms by superposing bilinear cohesive elements is proposed.
ILC Dover, under contract by NASA Langley Research Center, and in cooperation with NASA Johnson Space Center is designing and manufacturing an expandable lunar habitat. This cylindrical habitat, or Engineering Development Unit (EDU), is a hybrid system with two hard end caps and a deployable softgoods section in the center. The softgood section packs into the endcaps and the unit roughly doubles in length upon deployment. The EDU is designed to demonstrate packing and deployment of an expandable habitat under expected loading conditions.
An Abaqus/Standard FEA based study was carried out to develop a structural format for a wing sail used on a sailing boat, V-39 Albatross. As well as providing a novel structural solu-tion to meet a challenging set of requirements, the study has given the necessary mass properties and stiffness data required to further progress the preliminary design phase of the overall boat. The brief for the boat is to set a new world outright sailing speed record at Portland, UK.
An analysis of the crippling test applied to thin profiles is considered in this paper by using a standard tension test machine. Crippling tests are compression tests leading to crush collapse. This kind of tests cannot be properly performed in the standard test machine because of an inefficient transmission of the compression load to the specimen. To accomplish a more accurate test an improvement device is designed and modelled. This proposed device consists of four symmetrically-arranged guides joining the two machine heads.