Skip to main content

Blog posts

Modelling and Analysis of Welding Processes in Abaqus using the Virtual Fabrication Technology (VFT) Analysis Software developed

Submitted by SIMULIA on

The ability to accurately model welding processes in order to predict residual stresses and distortions is becoming increasingly important in the engineering industry. Abaqus can be used to model the welding process but this has been found to be considerably time consuming and requires a large number of assumptions to be made. Virtual Fabrication Technology is an analysis software suite that is designed to allow Abaqus to accurately model complex welding procedures. It was developed by the Battelle Memorial Institute in conjunction with Caterpillar Incorporated in the USA.

Micromechanics-Based Structural Analysis (FEAMAC) and Multiscale Visualization within Abaqus/CAE Environment

Submitted by SIMULIA on

A unified framework is presented that enables coupled multiscale analysis of composite structures and associated graphical pre and post processing within the Abaqus/CAE environment. The recently developed, free, Finite Element Analysis - Micromechanics Analysis Code (FEAMAC) software couples NASA's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) with Abaqus/Standard and /Explicit to perform micromechanics based FEA such that the nonlinear composite material response at each integration point is modeled at each increment by MAC/GMC.

IMPROVEMENTS IN FEA OF COMPOSITE OVERWRAPPED PRESSURE VESSELS

Submitted by SIMULIA on

Finite element analysis (FEA) of a composite overwrapped pressure vessel (COPV) has traditionally been a tedious and time consuming task. FEA is often omitted in the development of many vessels in favor of a “build and burst” philosophy based only on preliminary design with netting analysis. This is particularly true for small vessels or vessels that are not weight critical. The primary difficulty in FEA of a COPV is the creation of the model geometry on the sub-ply level.

Guidelines and Parameter Selection for the Simulation of Progressive Delamination

Submitted by SIMULIA on

Turon’s methodology for determining optimal analysis parameters for the simulation of progressive delamination is reviewed. Recommended procedures for determining analysis parameters for efficient delamination growth predictions using the Abaqus/Standard cohesive element and relatively coarse meshes are provided for single and mixed-mode loading.

Full cycle stochastic analysis of composite structures under buckling loads

Submitted by SIMULIA on

Structures in general are subject to uncertainty due to manufacturing, assembly, environment of work, loads, etc … This scatter more specifically is associated for example to tolerances of thickness, position, waviness, etc, material mechanical properties distribution, layup alignment axes. All these deviations can be taken into account with stochastic analysis to reduce the total cost of the project considering all the phases of product life (manufacturing, assembly, maintainability…) and make a global robust design.

A Finite Element Model for TBC Damage Detection and Lifetime Prediction

Submitted by SIMULIA on

Thermal Barrier Coatings (TBC) have been used for almost three decades for heat insulation in high-temperature components to increase efficiency. Reliable diagnostic techniques that are practical to implement are needed to identify the location and severity of degradation in TBCs to protect against premature TBC failure. Luminescence spectroscopy has been utilized in detecting early damage, as it exhibits monotonic changes in the spectral characteristics with damage. Nevertheless there is still no agreement on what are the best spectral parameters that indicate damage.

Coupled Euler Lagrangian Approach Using Abaqus/Explicit in the Bird Strike Aircraft Damage Analysis

Submitted by SIMULIA on

Bird impact damage in complex aircraft structure has been investigated using explicit transient dynamic analysis by Abaqus/Explicit in order to fully employ its large library of elements, material models and the ability of implementing user defined materials. The numerical procedure has been applied on the very detailed large airplane secondary structure consisting of sandwich, composite and metallic structural items that have been modeled with 3D, shell and continuum shell elements, coupled with appropriate kinematic constraints.

Analysis of Innovative Composite Aircraft Structures

Submitted by SIMULIA on

Innovative composite structures are increasingly being used in the aircraft industry. A critical point of these new composite parts is the attachment to the surrounding aircraft structure. In cooperation between different EADS Business Units, a new advanced composite load introduction rib is developed to minimize weight and manufacturing costs. The new design of the flap focuses on the load introduction rib and drive fitting including the integrated lugs for the attachment to the flap support structure.

Advanced Finite Element Analysis for the Skyhook- Boeing HLV Aircraft

Submitted by SIMULIA on

Boeing and Skyhook International entered into an agreement whereby Boeing will design and build two prototypes of the new Skyhook HLV aircraft. This hybrid airship is intended to carry 40 tons of cargo 100 miles. Due to the flexible, non-linear nature of fabric airship envelopes, as well as the complexity of designing a hybrid airship, the internal loads model for this aircraft is being developed in Abaqus and will be solved non-linearly.