ILC Dover, under contract by NASA Langley Research Center, and in cooperation with NASA Johnson Space Center is designing and manufacturing an expandable lunar habitat. This cylindrical habitat, or Engineering Development Unit (EDU), is a hybrid system with two hard end caps and a deployable softgoods section in the center. The softgood section packs into the endcaps and the unit roughly doubles in length upon deployment. The EDU is designed to demonstrate packing and deployment of an expandable habitat under expected loading conditions. Using a unique fabric lobe system, the structure is intended to be lighter in weight with a higher volume than a similar metal configuration. The restraint layer uses a webbing net construction with a coated fabric to carry the pressure loads up to 9 psi. Finite Element Analysis of the fabric lobe and webbing structure was performed to ensure that the structure will meet the desired safety limits. Analysis was also used to establish manufacturing tolerances during the fabrication process. Testing of the webbing seams and lobe under pressure further validated the design decisions. The next step in the evolution of the EDU is system testing, interior outfitting, and field operations.
| Attachment | Size |
|---|---|
| structural-design-analysis-testing-lunar-habitat-2009.pdf | 111.32 KB |