On geometric discretization of elasticity
This paper presents a geometric discretization of elasticity when
the ambient space is Euclidean. This theory is built on ideas from
algebraic topology, exterior calculus and the recent developments
of discrete exterior calculus. We first review some geometric
ideas in continuum mechanics and show how constitutive equations
of linearized elasticity, similar to those of electromagnetism,
can be written in terms of a material Hodge star operator. In the
discrete theory presented in this paper, instead of referring to