research
Computational modeling of tactoid dynamics in chromonic liquid crystals
Chiqun Zhang Amit Acharya Noel J. Walkington Oleg D. Lavrentovich
Motivated by recent experiments, the isotropic-nematic phase transition in chromonic liquid crystals is studied. As temperature decreases, nematic nuclei nucleate, grow, and coalesce, giving rise to tactoid microstructures in an isotropic liquid. These tactoids produce topological defects at domain junctions (disclinations in the bulk or point defects on the surface). We simulate such tactoid equilibria and their coarsening dynamics with a model using degree of order, a variable length director, and an interfacial normal as state descriptors. We adopt Ericksen's work and introduce an augmented Oseen-Frank energy, with non-convexity in both interfacial energy and the dependence of the energy on the degree of order. A gradient flow dynamics of this energy does not succeed in reproducing some simple expected feature of tactoid dynamics. Therefore, a strategy is devised based on continuum kinematics and thermodynamics to represent such features. The model is used to predict tactoid nucleation, expansion, and coalescence during the process of phase transition. We reproduce observed behaviors in experiments and perform an experimentally testable parametric study of the effect of bulk elastic and tactoid interfacial energy parameters on the interaction of interfacial and bulk fields in the tactoids.
Theoretical and experimental constitutive modelling of soft materials at the nano scale: Cylindrical micellar filaments
We present theoretical and experimental descriptions of the elasticity of cylindrical micellar filaments using micro-mechanical and continuum theories, and Atomic Force Microscopy. Following our micro-mechanical elasticity model for micellar filaments [Asgari, Eur. Phys. J. E 2015, 38(9)], the elastic bending energy of hemispherical end caps is found. The continuum description of the elastic bending energy of a cylindrical micellar filament is also derived using constrained Cosserat rod theory.
Localized Deformation in Plastic Liquids on Elastomers
Dear Colleagues,
Attached please find our recent paper “Localized Deformation in Plastic Liquids on Elastomers”.
Title: Localized Deformation in Plastic Liquids on Elastomers
Authors: Xavier P. Morelle, Ruobing Bai and Zhigang Suo
FINITE ELEMENTS IN PLASTICITY: D. R. J. OWEN E. HINTON - Source Code
Hello Everyone,
Does any one have the source code of this book.
FINITE ELEMENTS IN PLASTICITY: Theory and Practice by D. R. J. OWEN & E. HINTON .
I need it to understand the plasticity implementation in FEA.
Please mail me at ravi.iitroorkee [at] gmail.com
Thanks
Ravi
A new hybrid numerical scheme for modeling elastodynamics in unbounded media with near-source heterogeneities
The Finite Difference (FD) and the Spectral Boundary Integral (SBI) methods have been used extensively to model spontaneously propagating shear cracks in a variety of engineering and geophysical applications. In this paper, we propose a new modeling approach, in which these two methods are combined through consistent exchange of boundary tractions and displacements. Benefiting from the flexibility of FD and the efficiency of spectral boundary integral methods, the proposed hybrid scheme will solve a wide range of problems in a computationally efficient way.
Eigenerosion for static and dynamic brittle fracture
In contrast to many numerical methods, the eigenerosion approach yields a convenient description of fracture handled in the postprocessing part of a Finite Element Analysis (FEA). Its fully energetic formulation avoids the introduction of extra degrees of freedom to model fracture propagation. Following previous works on eigenerosion, in this publication, a modified formulation of eigenfracture it is introduced, where it is distinguished between compression and tension loaded state. This formulation has the advantage that it relates the crack propagation process only to tensile loading.
Veamy: an extensible object-oriented C++ library for the virtual element method
This paper summarizes the development of an object-oriented C++ library for the virtual element method (VEM) named Veamy, whose modular design is focused on its extensibility. The two-dimensional linear elastostatic problem has been chosen as the starting stage for the development of this library. In contrast to the standard finite element method, the VEM in two dimensions uses polygonal finite element meshes.
On the buckling and post-buckling of core-shell cylinders under thermal loading
There has been a strong and recent research activity to obtain tunable wrinkling patterns in film/substrate systems, which proposes to use geometric curvature as a control parameter. This paper studies core-shell cylindrical systems under thermal loads, with the aim to describe possible wrinkling modes, bifurcation diagrams and dimensionless parameters influencing the response of the system.
High thermal conductivity through simultaneously aligned polyethylene lamellae and graphene nanoplatelets
The effect of simultaneous alignment of polyethylene (PE) lamellae and graphene nanoplatelets (GnP) on thermal conductivity (k) of PE-GnP composites is investigated. Measurements reveal a large increase of 1100% in k of the aligned PE-GnP composite using 10 weight% GnPs relative to unoriented pure PE. Rate of increase of k with applied strain for the pure PE-GnP composite with 10 wt% GnP is found to be almost a factor of two higher than the pure PE sample, pointing to the beneficial effect of GnP alignment on k enhancement.
Pagination
- Previous page
- Page 134
- Next page