Skip to main content

Testing VUMAT With Uniaxial Compression Simulation

Submitted by gnoij on

Hi everyone, as I know so far all simple compression and tension test are treated as static loading problem and simulated using ABAQUS standard. However, if I want to test a new developed VUMAT using uniaxial compression simulation, is that means I must set up the compression simulation using all ABAQUS explicit option? In other words, am I gonna choose dynamic (explicit) option for compression step and mesh my model using explicit mesh? I tried to set up the compression test using dynamic (explicit) option but got very strange result. It seems that bulking always happens even I set contact properties between specimen and compression head as frictionless. But the result I expected is a deformed configuration which deform evenly in all direction, like the one we can obtain in ABAQUS standard using frictionless and pure elastic material properties. Is anyone has ideas or experiences in dealing with this kind of problem?  

Thank you. 





Hello,



I recommend you study the example input files provided for the example


1.3.16 Upsetting of a cylindrical billet: coupled temperature-displacement and adiabatic analysis





in the benchmark manual. First use standard commands. If this weird shape persists, the error must be within your VUMAT code.



Good luck



Frank

------------------------------------------
Ruhr-University
Bochum
Germany

Fri, 04/29/2011 - 08:44 Permalink

Thanks for your comment Frank, I read the example you mentioned and found out that for a same compression test, an axisymmetric explicit model would give me the desired homogeneous compression shape, but a 2D explicit model would give the weird deformed shape just like the one I shown above. Also, I try to compare 2 simple compression simulation with with differet solver, one use static general step (standard solver), and the other one use dynamic explicit step (explicit solver), both simulation use same material properties defined by ABAQUS built in elasticity and plasticity model, the simulation results are shown below. It seems to me that the cause of weird deformed shape in compression simulation is not the type of material but the type of solver. However, there should not be such a large difference between these results right? Can you tell me what is the reason? If I must use 2D (not axisymmetric) explicit solver  in this case, what setting should I use in order to obtain the similiar result as the one from standard solver?

Thank you

Fri, 05/13/2011 - 05:54 Permalink

 

Hello gnoij,





the picture

ABAQUS Standard result (wanted to achieve).jpg

shows that the lateral faces of the sample remain straight in the course of the deformation, i.e., the deformation proceeds friction-free. That means that a uniaxial state of stress should prevail. In that case the von Mises stress should equal the axial stress, and this should be homogeneous throughout the entire volume. This criterion holds both for cylindrical and square cross-section of the sample, and any constitutive behavior. This is contradicted in the picture. Did you generate it using standard commands only ?



The same holds for

Result From Standard Solver (mentioned in 3rd comment).jpg   

This is totally weird.



Looking at

ABAQUS Explicit result.jpg

I'd rather say that you are implementing 3d elements, not 2D.



There should be no qualitative difference between standard and explicit.



First restrict your simulations to strictly elastic materials.





You are lucky. I was teased by the term "Uniaxial Compression " in your topic. I devoted my own PhD thesis to it. I recommend you study the basics of the compression test. My PhD thesis is entitled

"Upsetting and Viscoelasticity of Vitreous SiO2: Experiments, Interpretation and Simulation"

and available for download at

http://opus.kobv.de/tuberlin/volltexte/2006/1179/



Pick chapters 3.1, 3.2, 6 and appendix B1.



If you are after the stress state in specimens of square cross-sections then honor Knein, a reference in my thesis. It is written in German though. Present-day knowledge is accumulated in books on "contact mechanics", e.g.:

K.L. Johnson: Contact Mechanics, Cambridge University Press; 1987



Post your input files or send them to me. State clearly which input file has generated which picture.



Frank

 

------------------------------------------
Ruhr-University
Bochum
Germany

Mon, 05/16/2011 - 09:03 Permalink

Hello Frank,

You are right, by setting the simulations to be frictionless and no separation after contact, I could obtain a homogeneous deformation with standard solver without any problem. However, the nonhomogeneous and twisted deformation occur if I switch to explicit solver, even if other settings like material and interaction properties are preserved.

My undergraduate final year project is to conduct the uniaxial compression simulation of bulk metallic glass which stated in the thesis entitled "The multi-axial deformation behavior of bulk metallic glasses at high homologous temperatures", but so far I still could not set up the simulation, needless to say run the VUMAT testing. Inside the thesis a 3D uniaxial compression simulation is solved using ABAQUS/Explicit by assuming that there is no friction between the specimen and piston, and the simulation result should be a homogeneous deformation. However, I just can not figure out how to make a dynamic explicit compression simulation to be homogeneous, all I got is some weird and twisted deformation as shown in 2nd and 3rd picture. In fact, the input file named "3D compression INP - Explicit solver" is actually my simulation model to conduct a identical compression simulation as the one mentioned in the thesis.

The input files for the pictures are upload on the first comment, please feel free to tell me your opinions about the INP files. Besides that, the computation time is found to become much longer when explicit solver is used. Do you know what is the reason and how to overcome it?

Thanks and regards

 

Wed, 05/18/2011 - 02:30 Permalink

 

Regarding the choice of an element type: in the pdf you provided they are using C3D8R resp. C3D8RT elements.



The specimen in the 3D simulation is not centered in your simulation. You observe a horizontal shift of the nodes on the central vertical line. Equivalently, the vertical shifts of the left edge and the right edge do not differ only in sign, but also in magnitude.

This also holds for the 2D simulation. In 2D Compression-Standard Solver (3rd picture) you see that the node defining the rigid die is aligned with element edges in the final configuration, but it is not in the initial configuration.



The twisted shape may result if it is not centered both horizontally and in the direction normal to the plane of the picture.



I am not familiar with generation of FEM models within CAE. I write my input files by hand which are the so-called "flattened" input files. Thus, all the "PickedSet" and "internal" stuff makes it a bit difficult for me to follow your coding. That's why I did not modify your input files.



You should, as a a first attempt:

1) change the element type

2) center the specimen

3) simulate only what you really need. Unless your boss insists drop the rigid dies and model them as a single horizontal line (2D) resp. plane for 3D, see my thesis.

Modeling the rigid dies is not needed. Looks nice, but if you want
to show them in contour plots you will lose resolution in the spatial
distribution over the specimen cross section. It is sufficient to model one eigth of the specimen as shown in Fig. 3 in that pdf, making use of symmetry considerations. The region of interest is thus only 2 mm x 2 mm x 4 mm. This will also reduce the simulation time. Pick one quarter of the cross-section (caution: divide measured force by four !) and only half of the height. Apply appropriate boundary conditions to restrict motion !

Once you incorporate thermal effects later this will also give you an opportunity to visualize internal thermal gradients from the specimen center to the surface as a contour plot (provided the gradient is large enough to be detectable). The Fig. 4a-d shows this gradient only on the surface.



Why do you want to model this process as 2D ? CPE4R elements do not feature the degree of freedom 6.



If you want to incorporate heat flow (p. 682 in the pdf), then refer to my thesis.



With which institution are you affiliated ? Is your boss one of R. Ekambaram, P. Thamburaja, H. Yang, Y. Li, N. Nikabdullah ?



Where do you get the VUMAT from ? Is the code reliable ? Did it get tested ?

 

------------------------------------------
Ruhr-University
Bochum
Germany

Thu, 05/19/2011 - 09:52 Permalink

Hi Frank,

      Thank you very much for your concern and opinion. I am a undergraduate student from National University Malaysia and my supervisor is Prof N. Nikabdullah. Actually constructing the VUMAT is my final year project objective. The 3D compression simulation result is needed to compare with experiment result in the paper in order to verify whether my VUMAT is reliable. While the 2D compression simulation is actually planned to be used as a faster testing manner to test my VUMAT during the developing process.

      So far I have constructed an isothermal VUMAT based on the constitutive model discussed in the research paper. To be honest I don't think my VUMAT is reliable so far. In fact, I have created another blogs for the problems I encounter in the process to develop my VUMAT, here is the links in case you are interested

http://imechanica.org/node/10304

http://imechanica.org/node/10305

      I am trying to run the simulation based on your suggestion now and will inform you when I get the result. Thanks again for your advice.

Fri, 05/20/2011 - 00:39 Permalink

Hi Frank,

      I have run the simulation base on your suggestions. I use a perfect elastic material first for testing (E=210GPa, v=0.3), the simulation boundary conditions are 3 symmetry BC on 3 mutual perpendicular node set, and a displacement BC on top of the specimen (geaometry set). Meshing element is standard C3D8R with default setting. Constant mass scaling of 5 is added on the pressing step to speed up the analysis. I run the simulation for about 2 hour, but the model seems to deform in a very unreasonable way. I think it is because I mess up with boundary coundary conditions. Can you give me some opinion regarding this problem and my simulation setting? 

P/S: The pictures of BC and deformed shape, and the INP file are uploaded on the 1st comment.  

Fri, 05/20/2011 - 01:22 Permalink





I modified your simulation (there was an error in the material definition) and converted it into an Abaqus Standard static test. The code is appended underneath. All seems to be fine. The stress is homogeneous and the boundary conditions seem to be well-defined.



In the explicit simulation I also observe weird crumbling of the specimen. Unfortunately, I am not at all familiar with Abaqus Explicit.



You'd better spread the word regarding your problem.



Become a member of

http://tech.groups.yahoo.com/group/Abaqus/

Note that

1) this is a moderated list, your posting will actually be read by the moderator before it gets posted

2) it is not possible to attach any documents to postings in this list. Refer to your blog by a link or express your problem in text only.



You may also post your query related to the VUMAT there, but in a separate posting only.



Developing VUMAT codes is quite challenging. Is your code to perform any better than the one used in that paper ? Also try finding VUMAT codes using Google. Combine the search terms "subroutine VUMAT" with "in partial fulfillment", a typical phrase in Master's or PhD theses.



Focus on the 3D simulation. I wouldn't know how you can benefit from a 2D simulation. You have nothing to compare to. At best you will know if it runs without any programming error. And the 3D simulation does not take really that long before you see some result.



I will be offline from Tuesday to Friday, and then have no access to ABAQUS till June 01 probably.



-----------------------------------------------



*Heading

** Job name: 3D-Elastic Model name: 3D

** Generated by: Abaqus/CAE 6.10-1

*Preprint, echo=NO, model=NO, history=NO, contact=NO

**

** PARTS

**

*Part, name=specimen

*Node

      1, 0.00100000005, 0.00200000009, 0.00200000009

      2, 0.00100000005, 0.00150000001, 0.00200000009

      3, 0.00100000005, 0.00100000005, 0.00200000009

      4, 0.00100000005, 0.000500000024, 0.00200000009

      5, 0.00100000005,           0., 0.00200000009

      6, 0.00100000005, -0.000500000024, 0.00200000009

      7, 0.00100000005, -0.00100000005, 0.00200000009

      8, 0.00100000005, -0.00150000001, 0.00200000009

      9, 0.00100000005, -0.00200000009, 0.00200000009

     10, 0.00100000005, 0.00200000009, 0.00150000001

     11, 0.00100000005, 0.00150000001, 0.00150000001

     12, 0.00100000005, 0.00100000005, 0.00150000001

     13, 0.00100000005, 0.000500000024, 0.00150000001

     14, 0.00100000005,           0., 0.00150000001

     15, 0.00100000005, -0.000500000024, 0.00150000001

     16, 0.00100000005, -0.00100000005, 0.00150000001

     17, 0.00100000005, -0.00150000001, 0.00150000001

     18, 0.00100000005, -0.00200000009, 0.00150000001

     19, 0.00100000005, 0.00200000009, 0.00100000005

     20, 0.00100000005, 0.00150000001, 0.00100000005

     21, 0.00100000005, 0.00100000005, 0.00100000005

     22, 0.00100000005, 0.000500000024, 0.00100000005

     23, 0.00100000005,           0., 0.00100000005

     24, 0.00100000005, -0.000500000024, 0.00100000005

     25, 0.00100000005, -0.00100000005, 0.00100000005

     26, 0.00100000005, -0.00150000001, 0.00100000005

     27, 0.00100000005, -0.00200000009, 0.00100000005

     28, 0.00100000005, 0.00200000009, 0.000500000024

     29, 0.00100000005, 0.00150000001, 0.000500000024

     30, 0.00100000005, 0.00100000005, 0.000500000024

     31, 0.00100000005, 0.000500000024, 0.000500000024

     32, 0.00100000005,           0., 0.000500000024

     33, 0.00100000005, -0.000500000024, 0.000500000024

     34, 0.00100000005, -0.00100000005, 0.000500000024

     35, 0.00100000005, -0.00150000001, 0.000500000024

     36, 0.00100000005, -0.00200000009, 0.000500000024

     37, 0.00100000005, 0.00200000009,           0.

     38, 0.00100000005, 0.00150000001,           0.

     39, 0.00100000005, 0.00100000005,           0.

     40, 0.00100000005, 0.000500000024,           0.

     41, 0.00100000005,           0.,           0.

     42, 0.00100000005, -0.000500000024,           0.

     43, 0.00100000005, -0.00100000005,           0.

     44, 0.00100000005, -0.00150000001,           0.

     45, 0.00100000005, -0.00200000009,           0.

     46, 0.000500000024, 0.00200000009, 0.00200000009

     47, 0.000500000024, 0.00150000001, 0.00200000009

     48, 0.000500000024, 0.00100000005, 0.00200000009

     49, 0.000500000024, 0.000500000024, 0.00200000009

     50, 0.000500000024,           0., 0.00200000009

     51, 0.000500000024, -0.000500000024, 0.00200000009

     52, 0.000500000024, -0.00100000005, 0.00200000009

     53, 0.000500000024, -0.00150000001, 0.00200000009

     54, 0.000500000024, -0.00200000009, 0.00200000009

     55, 0.000500000024, 0.00200000009, 0.00150000001

     56, 0.000500000024, 0.00150000001, 0.00150000001

     57, 0.000500000024, 0.00100000005, 0.00150000001

     58, 0.000500000024, 0.000500000024, 0.00150000001

     59, 0.000500000024,           0., 0.00150000001

     60, 0.000500000024, -0.000500000024, 0.00150000001

     61, 0.000500000024, -0.00100000005, 0.00150000001

     62, 0.000500000024, -0.00150000001, 0.00150000001

     63, 0.000500000024, -0.00200000009, 0.00150000001

     64, 0.000500000024, 0.00200000009, 0.00100000005

     65, 0.000500000024, 0.00150000001, 0.00100000005

     66, 0.000500000024, 0.00100000005, 0.00100000005

     67, 0.000500000024, 0.000500000024, 0.00100000005

     68, 0.000500000024,           0., 0.00100000005

     69, 0.000500000024, -0.000500000024, 0.00100000005

     70, 0.000500000024, -0.00100000005, 0.00100000005

     71, 0.000500000024, -0.00150000001, 0.00100000005

     72, 0.000500000024, -0.00200000009, 0.00100000005

     73, 0.000500000024, 0.00200000009, 0.000500000024

     74, 0.000500000024, 0.00150000001, 0.000500000024

     75, 0.000500000024, 0.00100000005, 0.000500000024

     76, 0.000500000024, 0.000500000024, 0.000500000024

     77, 0.000500000024,           0., 0.000500000024

     78, 0.000500000024, -0.000500000024, 0.000500000024

     79, 0.000500000024, -0.00100000005, 0.000500000024

     80, 0.000500000024, -0.00150000001, 0.000500000024

     81, 0.000500000024, -0.00200000009, 0.000500000024

     82, 0.000500000024, 0.00200000009,           0.

     83, 0.000500000024, 0.00150000001,           0.

     84, 0.000500000024, 0.00100000005,           0.

     85, 0.000500000024, 0.000500000024,           0.

     86, 0.000500000024,           0.,           0.

     87, 0.000500000024, -0.000500000024,           0.

     88, 0.000500000024, -0.00100000005,           0.

     89, 0.000500000024, -0.00150000001,           0.

     90, 0.000500000024, -0.00200000009,           0.

     91,           0., 0.00200000009, 0.00200000009

     92,           0., 0.00150000001, 0.00200000009

     93,           0., 0.00100000005, 0.00200000009

     94,           0., 0.000500000024, 0.00200000009

     95,           0.,           0., 0.00200000009

     96,           0., -0.000500000024, 0.00200000009

     97,           0., -0.00100000005, 0.00200000009

     98,           0., -0.00150000001, 0.00200000009

     99,           0., -0.00200000009, 0.00200000009

    100,           0., 0.00200000009, 0.00150000001

    101,           0., 0.00150000001, 0.00150000001

    102,           0., 0.00100000005, 0.00150000001

    103,           0., 0.000500000024, 0.00150000001

    104,           0.,           0., 0.00150000001

    105,           0., -0.000500000024, 0.00150000001

    106,           0., -0.00100000005, 0.00150000001

    107,           0., -0.00150000001, 0.00150000001

    108,           0., -0.00200000009, 0.00150000001

    109,           0., 0.00200000009, 0.00100000005

    110,           0., 0.00150000001, 0.00100000005

    111,           0., 0.00100000005, 0.00100000005

    112,           0., 0.000500000024, 0.00100000005

    113,           0.,           0., 0.00100000005

    114,           0., -0.000500000024, 0.00100000005

    115,           0., -0.00100000005, 0.00100000005

    116,           0., -0.00150000001, 0.00100000005

    117,           0., -0.00200000009, 0.00100000005

    118,           0., 0.00200000009, 0.000500000024

    119,           0., 0.00150000001, 0.000500000024

    120,           0., 0.00100000005, 0.000500000024

    121,           0., 0.000500000024, 0.000500000024

    122,           0.,           0., 0.000500000024

    123,           0., -0.000500000024, 0.000500000024

    124,           0., -0.00100000005, 0.000500000024

    125,           0., -0.00150000001, 0.000500000024

    126,           0., -0.00200000009, 0.000500000024

    127,           0., 0.00200000009,           0.

    128,           0., 0.00150000001,           0.

    129,           0., 0.00100000005,           0.

    130,           0., 0.000500000024,           0.

    131,           0.,           0.,           0.

    132,           0., -0.000500000024,           0.

    133,           0., -0.00100000005,           0.

    134,           0., -0.00150000001,           0.

    135,           0., -0.00200000009,           0.

    136, -0.000500000024, 0.00200000009, 0.00200000009

    137, -0.000500000024, 0.00150000001, 0.00200000009

    138, -0.000500000024, 0.00100000005, 0.00200000009

    139, -0.000500000024, 0.000500000024, 0.00200000009

    140, -0.000500000024,           0., 0.00200000009

    141, -0.000500000024, -0.000500000024, 0.00200000009

    142, -0.000500000024, -0.00100000005, 0.00200000009

    143, -0.000500000024, -0.00150000001, 0.00200000009

    144, -0.000500000024, -0.00200000009, 0.00200000009

    145, -0.000500000024, 0.00200000009, 0.00150000001

    146, -0.000500000024, 0.00150000001, 0.00150000001

    147, -0.000500000024, 0.00100000005, 0.00150000001

    148, -0.000500000024, 0.000500000024, 0.00150000001

    149, -0.000500000024,           0., 0.00150000001

    150, -0.000500000024, -0.000500000024, 0.00150000001

    151, -0.000500000024, -0.00100000005, 0.00150000001

    152, -0.000500000024, -0.00150000001, 0.00150000001

    153, -0.000500000024, -0.00200000009, 0.00150000001

    154, -0.000500000024, 0.00200000009, 0.00100000005

    155, -0.000500000024, 0.00150000001, 0.00100000005

    156, -0.000500000024, 0.00100000005, 0.00100000005

    157, -0.000500000024, 0.000500000024, 0.00100000005

    158, -0.000500000024,           0., 0.00100000005

    159, -0.000500000024, -0.000500000024, 0.00100000005

    160, -0.000500000024, -0.00100000005, 0.00100000005

    161, -0.000500000024, -0.00150000001, 0.00100000005

    162, -0.000500000024, -0.00200000009, 0.00100000005

    163, -0.000500000024, 0.00200000009, 0.000500000024

    164, -0.000500000024, 0.00150000001, 0.000500000024

    165, -0.000500000024, 0.00100000005, 0.000500000024

    166, -0.000500000024, 0.000500000024, 0.000500000024

    167, -0.000500000024,           0., 0.000500000024

    168, -0.000500000024, -0.000500000024, 0.000500000024

    169, -0.000500000024, -0.00100000005, 0.000500000024

    170, -0.000500000024, -0.00150000001, 0.000500000024

    171, -0.000500000024, -0.00200000009, 0.000500000024

    172, -0.000500000024, 0.00200000009,           0.

    173, -0.000500000024, 0.00150000001,           0.

    174, -0.000500000024, 0.00100000005,           0.

    175, -0.000500000024, 0.000500000024,           0.

    176, -0.000500000024,           0.,           0.

    177, -0.000500000024, -0.000500000024,           0.

    178, -0.000500000024, -0.00100000005,           0.

    179, -0.000500000024, -0.00150000001,           0.

    180, -0.000500000024, -0.00200000009,           0.

    181, -0.00100000005, 0.00200000009, 0.00200000009

    182, -0.00100000005, 0.00150000001, 0.00200000009

    183, -0.00100000005, 0.00100000005, 0.00200000009

    184, -0.00100000005, 0.000500000024, 0.00200000009

    185, -0.00100000005,           0., 0.00200000009

    186, -0.00100000005, -0.000500000024, 0.00200000009

    187, -0.00100000005, -0.00100000005, 0.00200000009

    188, -0.00100000005, -0.00150000001, 0.00200000009

    189, -0.00100000005, -0.00200000009, 0.00200000009

    190, -0.00100000005, 0.00200000009, 0.00150000001

    191, -0.00100000005, 0.00150000001, 0.00150000001

    192, -0.00100000005, 0.00100000005, 0.00150000001

    193, -0.00100000005, 0.000500000024, 0.00150000001

    194, -0.00100000005,           0., 0.00150000001

    195, -0.00100000005, -0.000500000024, 0.00150000001

    196, -0.00100000005, -0.00100000005, 0.00150000001

    197, -0.00100000005, -0.00150000001, 0.00150000001

    198, -0.00100000005, -0.00200000009, 0.00150000001

    199, -0.00100000005, 0.00200000009, 0.00100000005

    200, -0.00100000005, 0.00150000001, 0.00100000005

    201, -0.00100000005, 0.00100000005, 0.00100000005

    202, -0.00100000005, 0.000500000024, 0.00100000005

    203, -0.00100000005,           0., 0.00100000005

    204, -0.00100000005, -0.000500000024, 0.00100000005

    205, -0.00100000005, -0.00100000005, 0.00100000005

    206, -0.00100000005, -0.00150000001, 0.00100000005

    207, -0.00100000005, -0.00200000009, 0.00100000005

    208, -0.00100000005, 0.00200000009, 0.000500000024

    209, -0.00100000005, 0.00150000001, 0.000500000024

    210, -0.00100000005, 0.00100000005, 0.000500000024

    211, -0.00100000005, 0.000500000024, 0.000500000024

    212, -0.00100000005,           0., 0.000500000024

    213, -0.00100000005, -0.000500000024, 0.000500000024

    214, -0.00100000005, -0.00100000005, 0.000500000024

    215, -0.00100000005, -0.00150000001, 0.000500000024

    216, -0.00100000005, -0.00200000009, 0.000500000024

    217, -0.00100000005, 0.00200000009,           0.

    218, -0.00100000005, 0.00150000001,           0.

    219, -0.00100000005, 0.00100000005,           0.

    220, -0.00100000005, 0.000500000024,           0.

    221, -0.00100000005,           0.,           0.

    222, -0.00100000005, -0.000500000024,           0.

    223, -0.00100000005, -0.00100000005,           0.

    224, -0.00100000005, -0.00150000001,           0.

    225, -0.00100000005, -0.00200000009,           0.

*Element, type=C3D8R,elset=block

  1,  46,  47,  56,  55,   1,   2,  11,  10

  2,  47,  48,  57,  56,   2,   3,  12,  11

  3,  48,  49,  58,  57,   3,   4,  13,  12

  4,  49,  50,  59,  58,   4,   5,  14,  13

  5,  50,  51,  60,  59,   5,   6,  15,  14

  6,  51,  52,  61,  60,   6,   7,  16,  15

  7,  52,  53,  62,  61,   7,   8,  17,  16

  8,  53,  54,  63,  62,   8,   9,  18,  17

  9,  55,  56,  65,  64,  10,  11,  20,  19

 10,  56,  57,  66,  65,  11,  12,  21,  20

 11,  57,  58,  67,  66,  12,  13,  22,  21

 12,  58,  59,  68,  67,  13,  14,  23,  22

 13,  59,  60,  69,  68,  14,  15,  24,  23

 14,  60,  61,  70,  69,  15,  16,  25,  24

 15,  61,  62,  71,  70,  16,  17,  26,  25

 16,  62,  63,  72,  71,  17,  18,  27,  26

 17,  64,  65,  74,  73,  19,  20,  29,  28

 18,  65,  66,  75,  74,  20,  21,  30,  29

 19,  66,  67,  76,  75,  21,  22,  31,  30

 20,  67,  68,  77,  76,  22,  23,  32,  31

 21,  68,  69,  78,  77,  23,  24,  33,  32

 22,  69,  70,  79,  78,  24,  25,  34,  33

 23,  70,  71,  80,  79,  25,  26,  35,  34

 24,  71,  72,  81,  80,  26,  27,  36,  35

 25,  73,  74,  83,  82,  28,  29,  38,  37

 26,  74,  75,  84,  83,  29,  30,  39,  38

 27,  75,  76,  85,  84,  30,  31,  40,  39

 28,  76,  77,  86,  85,  31,  32,  41,  40

 29,  77,  78,  87,  86,  32,  33,  42,  41

 30,  78,  79,  88,  87,  33,  34,  43,  42

 31,  79,  80,  89,  88,  34,  35,  44,  43

 32,  80,  81,  90,  89,  35,  36,  45,  44

 33,  91,  92, 101, 100,  46,  47,  56,  55

 34,  92,  93, 102, 101,  47,  48,  57,  56

 35,  93,  94, 103, 102,  48,  49,  58,  57

 36,  94,  95, 104, 103,  49,  50,  59,  58

 37,  95,  96, 105, 104,  50,  51,  60,  59

 38,  96,  97, 106, 105,  51,  52,  61,  60

 39,  97,  98, 107, 106,  52,  53,  62,  61

 40,  98,  99, 108, 107,  53,  54,  63,  62

 41, 100, 101, 110, 109,  55,  56,  65,  64

 42, 101, 102, 111, 110,  56,  57,  66,  65

 43, 102, 103, 112, 111,  57,  58,  67,  66

 44, 103, 104, 113, 112,  58,  59,  68,  67

 45, 104, 105, 114, 113,  59,  60,  69,  68

 46, 105, 106, 115, 114,  60,  61,  70,  69

 47, 106, 107, 116, 115,  61,  62,  71,  70

 48, 107, 108, 117, 116,  62,  63,  72,  71

 49, 109, 110, 119, 118,  64,  65,  74,  73

 50, 110, 111, 120, 119,  65,  66,  75,  74

 51, 111, 112, 121, 120,  66,  67,  76,  75

 52, 112, 113, 122, 121,  67,  68,  77,  76

 53, 113, 114, 123, 122,  68,  69,  78,  77

 54, 114, 115, 124, 123,  69,  70,  79,  78

 55, 115, 116, 125, 124,  70,  71,  80,  79

 56, 116, 117, 126, 125,  71,  72,  81,  80

 57, 118, 119, 128, 127,  73,  74,  83,  82

 58, 119, 120, 129, 128,  74,  75,  84,  83

 59, 120, 121, 130, 129,  75,  76,  85,  84

 60, 121, 122, 131, 130,  76,  77,  86,  85

 61, 122, 123, 132, 131,  77,  78,  87,  86

 62, 123, 124, 133, 132,  78,  79,  88,  87

 63, 124, 125, 134, 133,  79,  80,  89,  88

 64, 125, 126, 135, 134,  80,  81,  90,  89

 65, 136, 137, 146, 145,  91,  92, 101, 100

 66, 137, 138, 147, 146,  92,  93, 102, 101

 67, 138, 139, 148, 147,  93,  94, 103, 102

 68, 139, 140, 149, 148,  94,  95, 104, 103

 69, 140, 141, 150, 149,  95,  96, 105, 104

 70, 141, 142, 151, 150,  96,  97, 106, 105

 71, 142, 143, 152, 151,  97,  98, 107, 106

 72, 143, 144, 153, 152,  98,  99, 108, 107

 73, 145, 146, 155, 154, 100, 101, 110, 109

 74, 146, 147, 156, 155, 101, 102, 111, 110

 75, 147, 148, 157, 156, 102, 103, 112, 111

 76, 148, 149, 158, 157, 103, 104, 113, 112

 77, 149, 150, 159, 158, 104, 105, 114, 113

 78, 150, 151, 160, 159, 105, 106, 115, 114

 79, 151, 152, 161, 160, 106, 107, 116, 115

 80, 152, 153, 162, 161, 107, 108, 117, 116

 81, 154, 155, 164, 163, 109, 110, 119, 118

 82, 155, 156, 165, 164, 110, 111, 120, 119

 83, 156, 157, 166, 165, 111, 112, 121, 120

 84, 157, 158, 167, 166, 112, 113, 122, 121

 85, 158, 159, 168, 167, 113, 114, 123, 122

 86, 159, 160, 169, 168, 114, 115, 124, 123

 87, 160, 161, 170, 169, 115, 116, 125, 124

 88, 161, 162, 171, 170, 116, 117, 126, 125

 89, 163, 164, 173, 172, 118, 119, 128, 127

 90, 164, 165, 174, 173, 119, 120, 129, 128

 91, 165, 166, 175, 174, 120, 121, 130, 129

 92, 166, 167, 176, 175, 121, 122, 131, 130

 93, 167, 168, 177, 176, 122, 123, 132, 131

 94, 168, 169, 178, 177, 123, 124, 133, 132

 95, 169, 170, 179, 178, 124, 125, 134, 133

 96, 170, 171, 180, 179, 125, 126, 135, 134

 97, 181, 182, 191, 190, 136, 137, 146, 145

 98, 182, 183, 192, 191, 137, 138, 147, 146

 99, 183, 184, 193, 192, 138, 139, 148, 147

100, 184, 185, 194, 193, 139, 140, 149, 148

101, 185, 186, 195, 194, 140, 141, 150, 149

102, 186, 187, 196, 195, 141, 142, 151, 150

103, 187, 188, 197, 196, 142, 143, 152, 151

104, 188, 189, 198, 197, 143, 144, 153, 152

105, 190, 191, 200, 199, 145, 146, 155, 154

106, 191, 192, 201, 200, 146, 147, 156, 155

107, 192, 193, 202, 201, 147, 148, 157, 156

108, 193, 194, 203, 202, 148, 149, 158, 157

109, 194, 195, 204, 203, 149, 150, 159, 158

110, 195, 196, 205, 204, 150, 151, 160, 159

111, 196, 197, 206, 205, 151, 152, 161, 160

112, 197, 198, 207, 206, 152, 153, 162, 161

113, 199, 200, 209, 208, 154, 155, 164, 163

114, 200, 201, 210, 209, 155, 156, 165, 164

115, 201, 202, 211, 210, 156, 157, 166, 165

116, 202, 203, 212, 211, 157, 158, 167, 166

117, 203, 204, 213, 212, 158, 159, 168, 167

118, 204, 205, 214, 213, 159, 160, 169, 168

119, 205, 206, 215, 214, 160, 161, 170, 169

120, 206, 207, 216, 215, 161, 162, 171, 170

121, 208, 209, 218, 217, 163, 164, 173, 172

122, 209, 210, 219, 218, 164, 165, 174, 173

123, 210, 211, 220, 219, 165, 166, 175, 174

124, 211, 212, 221, 220, 166, 167, 176, 175

125, 212, 213, 222, 221, 167, 168, 177, 176

126, 213, 214, 223, 222, 168, 169, 178, 177

127, 214, 215, 224, 223, 169, 170, 179, 178

128, 215, 216, 225, 224, 170, 171, 180, 179

*Nset, nset=Set-Top, generate

   1,  217,    9

*Elset, elset=Set-Top, generate

   1,  121,    8

*Solid Section, elset=block, material=Spring

,

*Nset, nset=Set-X, generate

 181,  225,    1

*Nset, nset=Set-Y, generate

   9,  225,    9

*Nset, nset=Set-Z

  37,  38,  39,  40,  41,  42,  43,  44,  45,  82,  83,  84,  85,  86,  87,  88

  89,  90, 127, 128, 129, 130, 131, 132, 133, 134, 135, 172, 173, 174, 175, 176

 177, 178, 179, 180, 217, 218, 219, 220, 221, 222, 223, 224, 225

*End Part

**  

**

** ASSEMBLY

**

*Assembly, name=Assembly

**  

*Instance, name=specimen-1, part=specimen

          0.,           0.,       -0.001

*End Instance

**  

*End Assembly

*Amplitude, name=Amp-1

          0.,           0.,     7.142857,           1.

**

** MATERIALS

**

*Material, name=Spring

*Density

6114.,

*Elastic

 2.1e+11, 0.3

** Using constructed VUMAT

**Material, name="User Material"

**Density

**6114.,

**Depvar

**     10,

**User Material, constants=1

**432.,

**

** BOUNDARY CONDITIONS

**

** Name: BC-SymX Type: Symmetry/Antisymmetry/Encastre

*Boundary

specimen-1.Set-X, XSYMM

** Name: BC-SymY Type: Symmetry/Antisymmetry/Encastre

*Boundary

specimen-1.Set-Y, YSYMM

** Name: BC-SymZ Type: Symmetry/Antisymmetry/Encastre

*Boundary

specimen-1.Set-Z, ZSYMM

** ----------------------------------------------------------------

**

** STEP: Step-Pressing

**

*Step, name=Step-Pressing,inc=1000

*Static

0.00001,1.0,0.00000001,0.01

**Dynamic, Explicit

**, 7.14286

**Bulk Viscosity

**0.06, 1.2

** Mass Scaling: Semi-Automatic

**               Whole Model

**Fixed Mass Scaling, factor=5.

**

** BOUNDARY CONDITIONS

**

** Name: BC-1 Type: Displacement/Rotation

*Boundary, amplitude=Amp-1

specimen-1.Set-Top, 2, 2, -0.002

**

** OUTPUT REQUESTS

**

**Restart, write, number interval=1, time marks=NO

**

** FIELD OUTPUT: F-Output-1

**

*Output, field

*Node Output

A, RF, U, V

*Element Output, directions=YES

EVF, LE, PE, PEEQ, PEEQVAVG, PEVAVG, S, SVAVG

**

** HISTORY OUTPUT: H-Output-2

**

*Output, history

*Node Output, nset=specimen-1.Set-Top

RT,

**

** HISTORY OUTPUT: H-Output-1

**

*Output, history, variable=PRESELECT

*End Step



------------------------------------------
Ruhr-University
Bochum
Germany

Fri, 05/20/2011 - 09:37 Permalink