Skip to main content

Tenure track position at University of Rochester

Submitted by niaz abdolrahim on

The department of Mechanical Engineering at University of Rochester is hiring a tenure track faculty at the assistant or associate professor level to start in July 2019. We are looking for candidates with expertise in experimental materials science such as synthesis, processing, characterization, and mechanical testing and design. 

Effects of CNT size on the desalination performance of an outer-wall CNT slit membrane

Submitted by Jingjie Yeo on

https://doi.org/10.1039/C8CP01191E We investigate the effect of varying carbon nanotube (CNT) size on the desalination performance through slit confinements formed by horizontally aligned CNTs stacked on top of one another. By increasing the CNT size, the results obtained from this study indicate a corresponding increase in the water flow rate, accompanied by a slight reduction in salt rejection performance.

A design principle for actuation of nematic glass sheets

Submitted by Amit Acharya on

(in Journal of Elasticity)

A continuum mechanical framework is developed for determining a) the class of stress-free deformed shapes and corresponding director distributions on the undeformed configuration of a nematic glass membrane that has a prescribed spontaneous stretch field and b) the class of undeformed configurations and corresponding director distributions on it resulting in a stress-free given deformed shape of a nematic glass sheet with a prescribed spontaneous stretch field. The proposed solution rests on an understanding of how the Lagrangian dyad of a deformation of a membrane maps into the Euleriandyad in three dimensional ambient space. Interesting connections between these practical questions of design and the mathematical theory of isometric embeddings of manifolds, deformations between two prescribed Riemannian manifolds, and the slip-line theory of plasticity are pointed out.

Strain Localization in Dry Sheared Fault Gouge: A Compactivity based approach

Submitted by Ahmed Elbanna on

Abstract: Shear banding is widely observed in natural fault zones as well as in laboratory experiments on granular materials. Understanding the dynamics of strain localization under different loading conditions is essential for quantifying strength evolution of fault gouge and energy partitioning during earthquakes and characterizing rheological transitions and fault zone structure changes. To that end, we develop a physics-based continuum model for strain localization in sheared granular materials.

Mechanics and Mussel adhesion: How bulk porosity may help things stick better

Submitted by Ahmed Elbanna on

On the Role of the Plaque Porous Structure in Mussel Adhesion: Implications for Adhesion Control Using Bulk Patterning

Ahmed Ghareeb and Ahmed Elbanna -- Journal of Applied Mechanics (2018)