Skip to main content

Epi-convergence (max-ent bases), crack growth

Submitted by N. Sukumar on

In the attached paper, we have used Variational Analysis techniques (in particular, the theory of epi-convergence) to prove the continuity of maximum-entropy basis functions. In general, for non-smooth functionals, moving objectives and/or constraints, the tools of Newton-Leibniz calculus (gradient, point-convergence) prove to be insufficient; notions of set-valued mappings, set-convergence, etc., are required. Epi-convergence bears close affinity to Gamma- or Mosco-convergence (widely used in the mathematical treatment of martensitic phase transformations). The introductory material on convex analysis and epi-convergence had to be omitted in the revised version; hence the material is by no means self-contained. Here are a few more pointers that would prove to be helpful. Our main point of reference is Variational Analysis by RTR and RJBW; the Princeton Classic Convex Analysis by RTR provides the important tools in convex analysis. For convex optimization, the text Convex Optimization by SB and LV (available online) is excellent. The lecture slides provide a very nice (and gentle) introduction to some of the important concepts in convex analysis. The epigraphical landscape is very rich, and many of the applications would resonate with mechanicians.

On a different topic (non-planar crack growth), we have coupled the x-fem to a new fast marching algorithm. Here are couple of animations on growth of an inclined penny crack in tension (unstructured tetrahedral mesh with just over 12K nodes): larger `time' increment and smaller `time' increment. This is joint-work with Chopp, Bechet and Moes (NSF-OISE project). I will update this page as and when more relevant links are available.

Education in China and in America

Submitted by Zhigang Suo on

The New York Times Magazine this weekend featured a Harvard undergraduate student from China, and her work to shake up education in China. The article is long, but if you grew up in China, it should be a quick read, and fun. If you grew up in US or Europe, perhaps this is a helpful read, just to learn how other people live.

The Industry First Compact Reverse Pulse Plating Controller for R&D Applications in MEMS and Nanotechnology

Submitted by Anonymous (not verified) on

Laguna Beach, CA March 31, 2007 -- Kebaili Corporation a leading California based high-tech company announced today the release of the CPG-500 Series, the industry first compact current pulse generator, specifically designed for electrodeposition applications, such as (direct current) DC plating, pulse plating, and periodic reverse pulse plating for a variety of applications in MEMS and nanotechnology.

iMechanica get together at McMat 2007

Submitted by Managers on
Choose a channel featured in the header of iMechanica
Free Tags

Time: 5:45 pm - 7:00 pm, Wednesday, 6 June 2007.

Place: TCC 2.120 , UT Austin. (The room is reserved form 5:45 pm to 10:00 pm.)

Session moderators: Rui Huang and K. Ravi-Chander

Audience: Anyone interested in iMechanica. See a thread of discussion initiated by Pradeep Sharma. The event is free for all. So if you are local but are not attending McMat, you are still welcome to drop by.

Is it possible to obtain (without modeling) the fracture strength of defect-free nanotubes or nanowires by tensile loading?

Submitted by Rod Ruoff on

What boundary conditions would allow failure to occur in the gauge length and not at or near the clamps? One is not allowed (in suggesting ways of overcoming stress concentation at the clamps) to create defects in the nanotube or nanowire, to configure the region where failure will occur.  Thus, it is not possible (or is it?)  to create an analog of dog-bone specimens by, e.g., milling away part of the nanowire with a focused ion beam, etc., because this creates defects in the nanowire.

Plastic Deformation Recovery in Freestanding Nanocrystalline Aluminum and Gold Thin Films

Submitted by Taher A Saif on



Science 30 March 2007:
Vol. 315. no. 5820, pp. 1831 - 1834
DOI: 10.1126/science.1137580

Jagannathan Rajagopalan, Jong H. Han, M. Taher A. Saif*

In nanocrystalline metals, lack of intragranular dislocation sources leads to plastic deformation mechanisms that substantially differ from those in coarse-grained metals. However, irrespective of grain size, plastic deformation is considered irrecoverable. We show experimentally that plastically deformed nanocrystalline aluminum and gold films with grain sizes of 65 nanometers and 50 nanometers, respectively, recovered a substantial fraction (50 to 100%) of plastic strain after unloading. This recoverywas time dependent and was expedited at higher temperatures. Furthermore, the stress-strain characteristics during the next loading remained almost unchanged when strain recovery was complete.These observations in two dissimilar face-centered cubic metals suggest that strain recovery might be characteristic of other metals with similar grain sizes and crystalline packing.

Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.