Skip to main content

dielectric elastomer

On designing dielectric elastomer actuators

Submitted by Mickael Moscardo on

Subject to a voltage, a dielectric elastomer can deform substantially, making it a desirable material for actuators. Designing such an actuator, however, has been challenging due to nonlinear equations of state, as well as multiple modes of failure, parameters of design, and measures of performance. This paper explores these issues, using a spring-roll actuator as an example.

Elastic dielectrics, slides for a short tutorial

Submitted by Zhigang Suo on

Rob Wood teaches a course on micro/nano robotics, and asks me to give a 30-minute tutorial on the theory of dielectric elastomer actuators (DEAs).  I attach my slides, which might be useful to you if you'd like to include this topic in your class.  The tutorial draws upon work in the literature, as well as recent work in my group:

Electromechanical instability of large deformation in dielectric elastomers

Submitted by Zhigang Suo on

I attach the slides of a presentation at the ASME meeting.  The talk was based on several recent papers on soft active materials (SAMs).  To give an uncluttered picture of the pull-in instability, I have removed all discussion on the Maxwell stress.   As you can see, the problem can be studied without ever mentioning this troublesome notion.

Propagation of instability in dielectric elastomers

Submitted by Jinxiong Zhou on

When an electric voltage is applied across the thickness of a thin layer of an dielectric elastomer, the layer reduces its thickness and expands its area. This electrically induced deformation can be rapid and large, and is potentially useful as soft actuators in diverse technologies. Recent experimental and theoretical studies have shown that, when the voltage exceeds some critical value, the homogenous deformation of the layer becomes unstable, and the layer deforms into a mixture of thin and thick regions.