Electromechanical instability in semicrystalline polymers
Electromechanical instability in semicrystalline polymers
Xuanhe Zhao , Zhigang Suo
Abstract
Electromechanical instability in semicrystalline polymers
Xuanhe Zhao , Zhigang Suo
Abstract
This paper studies a gel formed by a network of cross-linked polymers and a species of mobile molecules. The gel is taken to be a dielectric, in which both the polymers and the mobile molecules are nonionic. We formulate a theory of the gel in contact with a solvent made of the mobile molecules, and subject to electromechanical loads. A free-energy function is constructed for an ideal dielectric gel, including contributions from stretching the network, mixing the polymers and the small molecules, and polarizing the gel.
This letter describes a method to analyze electromechanical stability of dielectric elastomer actuators. We write the free energy of an actuator using stretches and nominal electric displacement as generalized coordinates, and pre-stresses and voltage as control parameters. When the Hessian of the free-energy function ceases to be positive-definite, the actuator thins down drastically, often resulting in electrical breakdown. Our calculation shows that stability of the actuator is markedly enhanced by pre-stresses.
Active polymers are being developed to mimic a salient feature of life: movement in response to stimuli. Large deformation can lead to intriguing phenomena; for example, recent experiments have shown that a voltage can deform a layer of a dielectric elastomer into two coexistent states, one being flat and the other wrinkled. This observation, as well as the needs to analyze large deformation under diverse stimuli, has led us to reexamine the theory of electromechanics.