Skip to main content

gel

Symposium on Soft Materials and Structures at 49th SES Meeting (Abstract Deadline: April 2, 2012)

Submitted by Xuanhe Zhao on

Dear Colleagues,

We would like to to draw your attention to the Symposium on **Soft Materials and Structures** to take place at the upcoming 49th Meeting of the Society of Engineering Sciences (SES) at GeorgiaTech, Atlanta, GA (October 10-12, 2011). More information can be found in the meeting's website: http://ses2012.org/

Poroelastic relaxation indentation of thin layers of gels

Submitted by Yuhang Hu on

We develop a method of poroelastic relaxation indentation (PRI) to characterize thin layers of gels.  The solution to the time-dependent boundary-value problem is obtained in a remarkably simple form, so that the force-relaxation curve obtained by indenting a gel readily determines all the poroelastic constants of the gel—the shear modulus, Poisson’s ratio, and the effective diffusivity.  The method is demonstrated with a layer of polydimethylsiloxane immersed in heptane.

A Theory of Ionic Polymer Conductor Network Composite

Submitted by xiao_wang on

Ionic polymer conductor network composite (IPCNC) is a mixed conductor consisting of a network of loaded ionomer and another network of metallic particles. It is known that the microstructure of the composite, especially that of the electrodes, plays a dominating role in the performance of an IPCNC. However the microstructures of IPCNC have seldom been addressed in theoretical models. This letter formulates a continuum field theory for IPCNC by considering a supercapacitor-like microstructure with a large distributed interface area.

Poroelasticity of a covalently crosslinked alginate hydrogel under compression

Submitted by Cai Shengqiang on

This paper studies the poroelastic behavior of an alginate hydrogel by a combination of theory and experiment. The gel—covalently crosslinked, submerged in water and fully swollen—is suddenly compressed between two parallel plates. The gap between the plates is held constant subsequently, and the force on the plate relaxes while water in the gel migrates. This experiment is analyzed by using the theory of linear poroelasticity.

Indentation of polydimethylsiloxane submerged in organic solvents

Submitted by Yuhang Hu on

This paper uses a method based on indentation to characterize a polydimethylsiloxane (PDMS) elastomer submerged in an organic solvent (decane, heptane, pentane, or cyclohexane).  An indenter is pressed into a disk of a swollen elastomer to a fixed depth, and the force on the indenter is recorded as a function of time.  By examining how the relaxation time scales with the radius of contact, one can differentiate the poroelastic behavior from the viscoelastic behavior.  By matching the relaxation curve measured experimentally to that derived from the theory of poroelasticity, o

Using indentation to characterize the poroelasticity of gels

Submitted by Yuhang Hu on

When an indenter is pressed into a gel to a fixed depth, the solvent in the gel migrates, and the force on the indenter relaxes. Within the theory of poroelasticity, the force relaxation curves for indenters of several types are obtained in a simple form, enabling indentation to be used with ease as a method for determining the elastic constants and permeability of the gel. The method is demonstrated with a conical indenter on an alginate hydrogel.

A theory of constrained swelling of a pH-sensitive hydrogel

Submitted by Cai Shengqiang on

Many engineering devices and natural phenomena involve gels that swell under the constraint of hard materials. The constraint causes a field of stress in a gel, and often makes the swelling inhomogeneous even when the gel reaches a state of equilibrium. To analyze inhomogeneous swelling of a pH-sensitive gel, we implement a finite element method in the commercial software ABAQUS.  The program is attached here.  Contact Shenqiang Cai (shqcai [at] gmail.com) for a description of the program.