Architected Lattices for Simultaneous Broadband Attenuation of Airborne Sound and Mechanical Vibrations in All Directions
Since their inception, more than two decades ago, phononic crystals and metamaterials have led to advanced materials with exceptional acoustic and elastic characteristics, such as negative effective mass and stiffness. In these materials, the dispersion properties and the energy transfer are controlled by selecting the geometry of the lattices and their constitutive material properties. Most designs, however, only affect one mode of energy propagation, transmitted either as acoustic airborne sound or as elastic structural vibrations.