Skip to main content

chaos

A semi-analytical time-domain model with explicit fluid force expressions for fluidelastic vibration of a tube array in crossflow

Submitted by Jinxiong Zhou on

It is widely acknowledged that fluidelastic instability (FEI), among other mechanisms, is of the greatest concern in the flow-induced vibration (FIV) of tube bundles in steam generators and heat exchangers. A range of theoretical models have been developed for FEI analysis, and, in addition to the earliest semi-empirical Connors’ model, the unsteady model, the quasi-steady model and the semi-analytical model are believed to be three advanced models predominant in the literature.

A semi-analytical time-domain model with explicit fluid force expressions for fluidelastic vibration of a tube array in crossflow

Submitted by Jinxiong Zhou on

It is widely acknowledged that fluidelastic instability (FEI), among other mechanisms, is of the greatest concern in the flow-induced vibration (FIV) of tube bundles in steam generators and heat exchangers. A range of theoretical models have been developed for FEI analysis, and, in addition to the earliest semi-empirical Connors’ model, the unsteady model, the quasi-steady model and the semi-analytical model are believed to be three advanced models predominant in the literature.

A novel class of highly efficient and accurate time-integrators in nonlinear computational mechanics

Submitted by Xuechuan Wang on

A new class of time-integrators is presented for strongly nonlinear dynamical systems. These algorithms are far superior to the currently common time integrators in computational efficiency and accuracy. These three algorithms are based on a local variational iteration method applied over a finite interval of time.

Nonlinear dynamics of rotating shaft with a breathing crack - CHINA SCHOLARSHIP COUNCIL PhD for 2017

Submitted by saberelarem on

Because of the increasing need of energy, the plants installed by electricity supply utilities throughout the world are becoming larger and more highly stressed. Thus, the risk of turbogenerator shaft cracking is increasing also. The development and propagation of a crack represents the most common and trivial beginning of integrity losses in engineering structures.