Skip to main content

thermodynamics

Pressure

Submitted by Zhigang Suo on

So far we have been mainly concerned with systems of a single independent variable: energy (node/4878). We now consider a system of two independent variables: energy and volume. A thermodynamic model of the system is prescribed by entropy as a function of energy and volume.

The partial derivatives of the function give the temperature and the pressure. This fact leads to an experimental procedure to determine the function for a given system.

The laws of ideal gases and osmosis are derived. The two phenomena illustrate entropic elasticity.

The Boltzmann Distribution

Submitted by Zhigang Suo on
  • A small system in thermal contact with a large system
  • The Boltzmann factor
  • Partition function
  • The probability for a system in thermal equilibrium with a reservoir to be in a specific state
  • The probability for a system in thermal equilibrium with a reservoir to be in a configuration
  • Thermal fluctuation of an RNA molecule
  • A matter of words

Return to the outline of Statistical Mechanics.

Probability

Submitted by Zhigang Suo on
  • An experiment that has many possible outcomes
  • Construct a sample space at a suitable level of detail
  • Probability of an event
  • Conditioning
  • Independent events
  • Random variable
  • Use a random variable to specify an event
  • Use a random variable to dissect a sample space
  • Probability distribution of a random variable
  • Variance of a random variable
  • A dimensionless measure of the fluctuation of a random variable

Return to the outline of Statistical Mechanics

A Fresh Look at a Beautiful Subject

Submitted by Zhigang Suo on

This is a review on Thermal Physics by Charles Kittle and Herbert Kroemer. I posted the review on Amazon on 2 December 2001.

This is by far THE BEST textbook on the subject. As many people say, thermodynamics is a subject that one has to learn at least three times. I can easily understand the very negative review from the undergraduate student at Berkely. The subject itself is hard, and simply is not for everyone, not for the first run at least. I say this from experience. I earned a Ph.D. degree over ten years ago, and took courses on thermodynamics at both undergraduate and graduate levels. I didn't understand the subject at all, and didn't find much use in my thesis work. However, something about the subject has kept me going back to it ever since. I now own about 40 books on the subject, and use the ideas almost daily in my research.