User login

Navigation

You are here

Northwestern University - TAM Webinar

Horacio Espinosa's picture

NU-TAM Webinars on Breakthroughs in Mechanics

TUESDAY – June 2nd 2020, 10 AM (Chicago)
https://northwestern.zoom.us/j/94584352713

New Perspective of Quasibrittle Fracture Mechanics Inspired by Novel Test with Crack-Parallel Compression

Zdeněk P. Bažant

ABSTRACT: The line-crack models, including the linear elastic fracture mechanics (LEFM), cohesive crack model (CCM), and extended finite element method (XFEM), rest on the century-old hypothesis of constancy of material’s fracture energy. However, a new type of fracture test presented here, named for brevity the “gap test”, reveals that, in concrete and probably all quasibrittle materials, including coarse-grained ceramics, rocks, stiff foams, fiber composites, printed materials, wood and sea ice, the effective mode I (opening) fracture energy depends strongly on the crack-parallel normal stress, in-plane or out-of-plane or both. This stress can double the Mode I fracture energy or reduce it to zero. Why hasn't this been detected earlier?--Because the crack-parallel stress in all standard fracture specimens is negligible, and is anyway unaccountable by line-crack models. To simulate this phenomenon by finite elements (FE), the fracture process zone (FPZ) must have a finite width and must be characterized by a realistic tensorial softening damage model whose vectorial constitutive law captures oriented mesoscale frictional slip, microcrack opening and splitting with possible microbuckling. This is effectively accomplished by the FE crack band model. When coupled with microplane model M7, it fits the test results closely. The lattice discrete particle model (LDPM) also works. However, the line-crack models LEFM, CCM and XFEM do not, while the simple damage laws used phase-field models are inadequate. The gap test is proposed as a standard. It represents a simple modification of the three-point-bend test in which both the bending and crack-parallel compression, generated sequentially, are statically determinate. The lecture closes by offering a new perspective of various far-reaching consequences.

Hosted by Horacio D. Espinosa and Yonggang Huang

AttachmentSize
PDF icon Bazant-June 2 10 AM.pdf490.77 KB

Comments

Cai Shengqiang's picture

Dear Horacio, 

Thanks for the sharing this. I am looking forward to the webinar. 

shengqiang

Horacio Espinosa's picture

 

 

To enable a larger number of attendees, this webinar has been moved to:

 

Zoom Webinar Link: https://northwestern.zoom.us/j/94584352713

 

Normal
0

false
false
false

EN-US
X-NONE
X-NONE

/* Style Definitions */
table.MsoNormalTable
{mso-style-name:"Table Normal";
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
mso-style-noshow:yes;
mso-style-priority:99;
mso-style-parent:"";
mso-padding-alt:0in 5.4pt 0in 5.4pt;
mso-para-margin-top:0in;
mso-para-margin-right:0in;
mso-para-margin-bottom:8.0pt;
mso-para-margin-left:0in;
line-height:107%;
mso-pagination:widow-orphan;
font-size:11.0pt;
font-family:"Calibri",sans-serif;
mso-ascii-font-family:Calibri;
mso-ascii-theme-font:minor-latin;
mso-hansi-font-family:Calibri;
mso-hansi-theme-font:minor-latin;
mso-bidi-font-family:"Times New Roman";
mso-bidi-theme-font:minor-bidi;}

 

Subscribe to Comments for "Northwestern University - TAM Webinar"

Recent comments

More comments

Syndicate

Subscribe to Syndicate