Data-Driven State of Health Estimation for Lithium-Ion Batteries Based on Universal Feature Selection
A simple yet effective health indicator (HI)-based data-driven model forecasting the state of health (SOH) of lithium-ion batteries (LIBs) and thus enabling their efficient management is developed. Five HIs with high physical significance and predictive power extracted from voltage, current, and temperature profiles are used as model inputs. The generalizability and robustness of the proposed ridge regression–based linear regularization model are assessed using three NASA datasets containing information on the behavior of batteries over a wide range of temperatures and discharge rates.