User login

Navigation

You are here

Teng Li's blog

Teng Li's picture

How to post a video?

Sometimes a video can be more convenient and effective than words on delivering a message. Now you can embed videos in your post in iMechanica. As a demonstration, I first embed a video below I made previously on how to make hyperlinks in your post. If you're interested in posting a video in iMechanica, read the following instructions:

How to embed a video in your post?
Step 1: Sign up a free account at YouTube.com, a website you can share videos online. Upon sign up, you can upload videos to YouTube. Follow the easy directions there. Of course you may want to read copyright tips of YouTube before uploading.
Step 2: Once uploaded, your video will have a Unique URL. You can always provide a hyperlink of the video in your post. To directly embed the video into a post, you need to use the html code automatically generated by YouTube, which you can easily find below the unique URL in the video information. Copy the entire html code.
Step 3: Since the current setting of the default text editor of iMechanica (those MS-word-type buttons above the textbox, called TinyMCE) does not support video yet, you need to turn it off and just use plain html. To turn off TinyMCE, click "my account" on the left sidebar, then click "edit" tab. Below "Account information" box, find "TinyMCE rich-text settings" and click it to expand the box. In the Default state, it shows "true" (means TinyMCE is on). Click the drop-down list and choose "false" . Scroll down to the bottom and click "Submit". Now TinyMCE is turned off.
Step 4: Start to post a new entry. Now you should see a Body textbox without any buttons. Paste the YouTube html code into the box. You can add any description above or below the code. If you want, you can also use any html editor to prepare your post and copy/paste the entire html file into the box.
Step 5: Preview your post then submit. Now all iMech users can view your video without leaving your post!
Of course, you can always turn TinyMCE back on by repeating Step 3.
We're still improving the video function in iMechanica. If you have any creative ideas to better achieve such a function, welcome to leave your comment below.
Enjoy vlogging in iMech.

 

Teng Li's picture

Looking for a job in academia?

Finding an academic job is like finding a perfect match. Universities advertise openings, you choose a list of places to apply. Nowadays an opening can easily attract hundreds of applicants, of which several are invited for on-campus interview. When the whole process is over, there might be a perfect match between you and a department (Congratulations!), while sometimes there is not.

Teng Li's picture

Video Demo: How to make hyperlinks in your post?

In a recent post, Zhigang Suo explains how to add hyperlinks in your post. We all understand how hard to write an instruction for a simple operation, so we should appreciate Dr. Suo's every effort trying to be elucidative.

If you prefer a visualized instruction, click here to watch a video demonstration on how to make a post in your blog at iMechanica, and how to add a hyperlink in your post.

Teng Li's picture

nanoHUB: online simulations and more

The nanoHUB is a web-based initiative spearheaded by the NSF-funded Network for Computational Nanotechnology (NCN). Based at Purdue University and partnered by eight other universities, nanoHUB provides a web interface to numerous resources relevant to students and practitioners in nanotechnology. The cyber environment includes online courses and tutorials, proceedings of seminars, collaborative tools, and an interface for online simulation.

For example, you can view research seminars on nanoHUB through online slideshow with audio, powered by Breeze technology. You can go over the outline of the seminar, choose thumbnail views of the slides and even search text within the titles of the slides, then locate the content of interest and save some time. Another type of resource on nanoHUB is the online simulation tools, which run realtime on nanoHUB. No installation is needed.

The nanoHUB resources are open to public for free. You just need to register to use. In the last eight months, nanoHUB has served more than 10,000 users, with about 60,000 simulation jobs run and more than 10,000 videos viewed. The web server hits of nanoHUB reach 1 million in May 2006.

Teng Li's picture

MRS Bulletin features Macroelectronics

The June 2006 issue of MRS Bulletin features Macroelectronics.

The guest editor of this issue include Robert H. Reuss (program manager of DARPA's macroelectronics program), Darrel G. Hopper (principal electronics engineer at US ARFL), and Jae-Geun Park (Materials Center at Samsung Advanced Institute of Technology)

The issue include a theme review article by the guest editors and four theme technical articles covering various topics related to macroelectronics.

(via www.macroelectronics.org)

Teng Li's picture

Strength map of carbon nanotube

 

 

In theory, carbon nanotubes are 100 times stronger than steel at one-sixth the weight, but in practice, scientists have struggled make nanotubes that live up to those predictions. This is partly because there are still many unanswered questions about how nanotubes break and under what conditions.

Recently, Prof. Boris I. Yakobson at Rice University, his former postdoc Traian Dumitrica (now assistant professor at University of Minnesota), and his doctoral student Ming Hua, have developed a new computer modeling approach to create a “strength map” that plots the likelihood or probability that a carbon nanotube will break—and how it’s likely to break. Four critical variables are considered in the model: load level, load duration, temperature, and chirality. This work was published in the Proceedings of the National Adacemy of Sciences (Apr. 18, 2006 Cover feature). Full text pdf file of this paper is available here.

Teng Li's picture

Whence the Force of F=ma?

This is the title of a three-part series published in Physics Today by Frank Wilczek, the Herman Feshbach Professor of Physics at MIT. Prof. Wilczek is considered one of the world's most eminent theoretical physicists, and is the 2004 Nobel laureate in Physics for work he did as a graduate student at Princeton University, when he was only 21 years old.

Prof. Wilczek contributes regularly to Physics Today and to Nature, explaining topics at the frontiers of physics to wider scientific audiences. The following series of his "musing on mechanics" won the Best American Science Writing in 2005:
Whence the Force of F=ma? 1: Culture Shock
Whence the Force of F=ma? II: Rationalizations
Whence the Force of F= ma ? III: Cultural Diversity

Prof. Wilczek recently published a book named Fantastic Realities, in which 49 inspiring pieces, including the above three, of "mind journeys" are included. This book also includes contribution from his wife Betsy Devine's blog on what winning a Nobel Prize looks like from inside prizewinner's family.
You may also enjoy a recent podcast of Scientific American, in which Prof. Wilczek and his wife talk about their new book.

Teng Li's picture

A Virtual Tour of the 1906 Great Earthquake in Google Earth

The California earthquake of April 18, 1906 (one century ago today) ranks as one of the most significant earthquakes of all time. Today, its importance comes more from the wealth of scientific knowledge derived from it than from its sheer size --it marked the dawn of modern science of earthquakes.

U.S. Geological Survey (USGS) recently provides a virtual tour utilizing the geographic interactive software Google Earth to explain the scientific, engineering, and human dimensions of this earthquake. This virtual tour can help you visualize and understand the causes and effects of this and future earthquakes.

Enjoy this virtual tour to explore how Google Earth (and other new softwares...) can facilitate and improve the way we teach and conduct research.

Teng Li's picture

Organic LED could replace light bulb?

Lighting accounts for about 22% of the electricity consumed in buildings in the United States, and 40% of that amount is eaten up by inefficient incandescent light bulbs. The search for economical light sources has been a hot topic.

Recently, scientists have made important progress towards making white organic light-emitting diodes (OLEDs) commercially viable as light source. As reported in a latest Nature article, even at an early stage of development this new source is up to 75% more fficient than today's incandescent sources at similar brightnesses. The traditional light bulb's days could be numbered.

Read media report here.

(Via www.macroelectronics.org)

Teng Li's picture

Google Scholar can localize your search to library links

Search globally, go locally. Starting from Feb. 2006, Google Scholar offers links to find papers in your local library. See here for details.

Teng Li's picture

Online Journal Club on Flexible Electronics

For many years, people accumulate personal collections of academic publications of interest in paper form. As such collections grow with time, more file cabinets and book shelves are needed for storage. First, space becomes a problem. Second, finding a specific paper could be a headache, even if the collections are well categorized.

As more and more publications become available online in recent years, people gradually switch to collect electronic versions, e.g. PDF files of papers. These files are often stored in local hard drives. Space is not an issue anymore. But again, locating a paper from hundreds of files in tens of folders still might be a heck of efforts.

Besides the difficulty in searching, other common shortcomings include:

  • Locally stored, limited access flexibility.
  • Personally owned, not easy to share with other people. As a result, the scale of personal collections is often limited.
  • Redundently collected. Consider this: a same gem paper is manually archived by thousands of people individually.
  • Statically and passively maintained. Lack of interactions among people sharing common interests.

Any better idea? Here comes Web2.0, which is all about online collaboration. Among the numerous tools enabled by Web2.0, CiteULike could be the one able to solve the above issues for us. A previous post in AMN explored the possibility to form online journal club based on CiteULike. Here is an example.

Teng Li's picture

CiteULike: Your online library of scientific literature, and more...

CiteULike is an online service to help academics to share, store, and organize the scientific literature. When you see a paper or a book on the web that interests you, you can click one button and have it added to your personal library. CiteULike automatically extracts the citation details (e.g., title, authors, abstract, and DOI). Currently, it supports more than 30 pubishing websites, many of which are of interest of mechanics community, e.g., ScienceDirect, AIP Scitation, Science, Nature, SpringerLink and Amazon.

Searching in your CiteULike library can be very easy. The surnames of all authors in your library are automatically tagged. You can also tag the papers and the books in your library as you like. All these tags appear in a tag cloud. Therefore, locating a paper in your library will be only one or two clicks away. Also, because your library is stored on the web server, you can access it from any computer.

You can also form a group, and integrate every member's own library to a group library. CiteULike also allows everyone to add note on papers or books. By combining the group and the note functions, you can easily form an online journal club among colleagues, collabarators, students, or any group with common interests, no matter how far away from each other.

Programmed by Richard Cameron and generously hosted by the University of Manchester in England, CiteULike is a free service to everyone. You just need to register to use its full functions. It all works within your web browser, no extra software is needed. So give it a try and enjoy.

Note: Nature publishing group also provides a similar service named Connotea. After experimenting both of them, I share the same feeling of many other users: while more attractive at the first sight, Connotea currently offer less flexible functions than CiteULike. I personally vote for CiteULike. You may want to share your experience with CiteULike or Connotea by commenting this entry.

Update on 4 July 2006:

Macroelectronics Journal Club, an online journal club focusing on flexible electronics and running on CiteULike platform, has been launched by www.macroelectronics.org. See a brief introduction here and detail announcement here.

Update on 14 July 2006:

By default, CiteULike stores links to papers. To get full access of a paper, you often need to locate the paper within the subscription of your institution, instead of its original link. By using a scalable bookmarklet, now localizing the paper links can be only as easy as one click away. See a recent iMechanica entry for details.

Teng Li's picture

What can mechanics community learn from the success of Google?

A cartoon in The New Yorker magazine shows a boy asking his dad a question. The dad, reading a book, replies, “Go ask your search engine.” The cartoon was published in Feb. 2000, three months before Google officially became the world's largest search engine with its introduction of a billion-page index — the first time so much of the web's content was made searchable. If the boy asks again today, his dad will say, “Go ask Google.”

At $6 billion a year in revenue and $7.6 billion in cash, Google is a success. What’s more important to the rest of us, Google is running its business in a way that may change the world. Through its never-about-average products (i.e., Google search, Google Earth (and Mars too), Google Map, and more recently, Writely), Google is radically redefining the ways we obtain, organize, use, store, and share information.

Teng Li's picture

Review Articles on Flexible Electronics

[img_assist|nid=46|title=|desc=|link=url,http://www.materialstoday.com/2006_issues/april.htm|align=right|width=75|height=100]The cover story of the April 2006 issue of Materials Today features Flexible Electronics. This issue also includes two review articles in this emerging field of research. Access to full text articles is free of charge at http://www.materialstoday.com.

Review Article:

Material challenge for flexible organic devices, by Jay Lewis

Review Article:

Organic and polymer transistors for electronics, by Ananth Dodabalapur

Cover Story:

Jet printing flexible displays, by R.A. Street et al.

Pages

Subscribe to RSS - Teng Li's blog

Recent comments

More comments

Syndicate

Subscribe to Syndicate