Strain Induced Growth Instability and Island Nucleation on Patterned Substrate
Strain induced self-assembly provides an attractive route to nanofabrication of semiconductor quantum dots on surfaces. Recent experiments have demonstrated that combining the strain induced self-assembly with surface patterning provides an effective method to further improve the size uniformity and spatial ordering of quantum dots. However, the underlying mechanisms responsible for such improvement remain poorly understood. Recently, we have developped theoretical models to elucidate the strain induced growth instability and island nucleation on patterned substrates.