Multiaxial behavior of nanoporous single crystal copper: a molecular dynamics study
The stress-strain behavior and incipient yield surface of nanoporous single crystal copper are studied by the molecular dynamics (MD) method. The problem is modeled by a periodic unit cell subject to multi-axial loading. The loading induced defect evolution is explored. The incipient yield surfaces are found to be tension-compression asymmetric. For given void volume fraction, apparent size effects in the yield surface are predicted: the smaller behaves stronger.