Skip to main content

Phase-field simulation of anisotropic crack propagation in ferroelectric single crystals

Submitted by Amir Abdollahi on

This is the preprint of an article that will appear in Modelling and Simulation in Materials Science and Engineering (MSMSE)

Title: Phase-field simulation of anisotropic crack propagation in ferroelectric single crystals: effect of microstructure on the fracture process

Authors: Amir Abdollahi and Irene Arias, Universitat Politecnica de Catalunya (UPC), Barcelona

 

 

Abstract:

Crack propagation during the indentation test of a ferroelectric single crystal is simulated using a phase-fi eld model. This model is based on variational

formulations of brittle crack propagation and domain evolution in ferroelectric materials. Due to the high compressive stresses near the indenter contact faces, a

modi ed regularized formulation of the variational brittle fracture is coupled with the material model to prevent crack formation and interpenetration in the compressed

regions. The simulation results show that the radial cracks perpendicular to the poling direction of the material propagate faster than the parallel ones, which is in agreement

with experimental observations. This anisotropy in the crack propagation is due to interactions between the material microstructure and the radial cracks, as captured by

the phase-fi eld simulation.