Skip to main content

research

Characterization of Human Diaphragm at high strain rate loading.

Submitted by gaurp on

In this paper, we studied the strain rate dependent failure properties of human diaphragm tissue using uniaxial tensile testing at four strain rates, i.e. 0.0015/s, 65/s, 130/s and 190/s. The custom made quasi-satatic and drop tower based dynamic test setups was used to conduct the tests uptill 200/s strain rate.

Modeling the Hydrophobicity of Nanoparticles and Their Interaction with Lipids and Proteins

Submitted by Ali Ramazani on

We present a method of modeling nanoparticle (NP) hydrophobicity using coarse-grained molecular dynamics (CG MD) simulations, and apply this to the interaction of lipids with nanoparticles. To model at a coarse-grained level the wettability or hydrophobicity of a given material, we choose the MARTINI coarse-grained force field, and determine through simulation the contact angles of MARTINI water droplets residing on flat regular surfaces composed of various MARTINI bead types (C1, C2, etc.).

What kind of tensile testing grips is right for your samples and application?

Submitted by Deniz Yalcin on

Choosing the most appropriate tensile grips to effectively secure your samples is critical in getting accurate measurements of tensile properties such as tensile strength, peak load, elongation, tensile modulus, and yield.

Recent work "Self-Assembly of Islands on Spherical Substrates by Surface Instability"

Submitted by Xiangbiao Liao on

Through strain-induced morphological instability, protruding patterns of roughly commensurate nanostructures are self-assembled on the surface of spherical core/shell systems. A three-dimensional (3D) phase field model is established for a closed substrate. We investigate both numerically and analytically the kinetics of the morphological evolution, from grooves to separated islands, which are sensitive to substrate curvature, misfit strain, and modulus ratio between the core and shell.

The surface-forming energy release rate versus the local energy release rate

Submitted by Bin Liu on

In our just published paper, we identify two ways to extract the energy (or power) flowing into a crack tip during propagation based on the power balance of areas enclosed by a stationary contour and a comoving contour. It is very interesting to find a contradiction that two corresponding energy release rates (ERRs), a surface-forming ERR and a local ERR, are different when stress singularity exists at a crack tip. Besides a rigorous mathematical interpretation, we deduce that the stress singularity leads to an accompanying kinetic energy at the crack tip.