User login

Navigation

You are here

education

EFG Matlab Routines

These used to be hosted at Northwestern, but the files were taken down some time ago. The original 1d and 2d Matlab routines for the element-free Galerkin method are now located at

http://www.duke.edu/~jdolbow/EFG/programs.html

These routines are described in detail in the paper

J. Dolbow and T. Belytschko (1998), "An Introduction to Programming the Meshless Element Free Galerkin Method," Archives of Computational Methods in Engineering, vol. 5, no. 3, pp. 207--242.

NEW ERASMUS MUNDUS MASTER COURSE IN COMPUTATIONAL MECHANICS

I am writing to you to bring to your attention a new Master Course on Computational Mechanics, which has been awarded the Erasmus Mundus label.

It is an international Master course given jointly in English by the Universidad Politécnica de Cataluña (Barcelona), University of Wales Swansea), Ecole Centrale Nantes and Universität Stuttgart with the collaboration of CIMNE International Centre for Numerical Methods in Engineering, Barcelona). The Erasmus Mundus program:

Mechanical Properties of Thin Films (class notes for a graduate class at Stanford University)

The attached file is a set of class notes developed by W.D. Nix of Stanford University and used in a graduate course on Mechanical Properties of Thin Films. These notes have been used in the graduate course MSE 353 since the late 1980's. That course has been taught every year or so since that time. The notes were last updated in January of 2005. The reader will see a note to the effect that many of the figures and illustrations in the file have been taken from the work of students and colleagues at Stanford without proper attribution.

Vlado A. Lubarda's picture

Recent book "Mechanics of Solids and Materials" by Asaro & Lubarda

Mechanics of Solids and Materials intends to provide a modern and integrated treatment of the foundations of solid mechanics as applied to the mathematical description of material behavior. The book blends both innovative (e.g., large strain, strain rate, temperature, time-dependent deformation and localized plastic deformation in crystalline solids, and deformation of biological networks) and traditional topics (e.g., elastic theory of torsion, elastic beam and plate theories, and contact mechanics) in a coherent theoretical framework. This, and the extensive use of transform methods to generate solutions, makes the book of interest to structural, mechanical, and aerospace engineers.

Liu's picture

Summer research internship in Germany

The German Academic Exchange Service (DAAD) - in cooperation with science organizations in North America and Germany— is to invite undergraduate students from the US and Canada in the fields of biology, chemistry, physics, earth Sciences and engineering to apply for a summer research internship in Germany. RISE summer placements take place with research groups at universities and top research institutions across Germany. The RISE interns are matched with a doctoral student whom they assist and who will also serve as their mentor. This program is funded by the Federal Ministry of Economics and Technology as part of the European Recovery Program (ERP).

More details at http://www.daad.de/rise/en/1.html.

The first course in continuum mechanics

In response to Zhigang's forum topic on the first course in continuum mechanics, it is so happened that I am also teaching a continuum mechanics course this semester. I shall list our continuum mechanics course outline taught here in Berkeley.

Berkely has its tradition and its special flavour on Continuum Mechanics. The history goes back to Paul Naghdi, Tom Hughes, Jerry Marsden, Juan Simo, David Bogy, Coby Lubliner, Bob Taylor, Karl Pister, James Casey, Geroge Johnson, and some others.

Zhigang Suo's picture

Let's compare notes: first graduate courses in solid mechanics

Choose a channel featured in the header of iMechanica: 
Free Tags: 

This semester I teach an introductory graduate course in solid mechanics. Following a suggestion made by Mark Walter, I posted an outline of my course in iMechanica.

This is the first time I teach the course at Harvard, but I taught a similar course at UCSB, and an upper-level undergraduate course of similar content at Princeton. The students for the three courses have different backgrounds. At Harvard, I assume that students have taken an undergraduate course on strength of materials (tension, bending, torsion, etc.), a course on multi-variable calculus, and a course on linear algebra. I try to avoid excessive math, and try to bring out features of mechanics. (My students may disagree with me, but at least my heart is in right place.) Most students will not be specialized in mechanics, as evident from their descriptions of themselves.

Rui Huang's picture

EM 397 Thin Film Mechanics Term Paper

Each student completes a term paper of selected topics that (a) addresses a phenomenon in thin film materials, and (b) involves analyses using mechanics. The project contributes 25% of the grade, distributed as follows:

  • 5%: November 30 (Thursday). Post your title and abstract in iMechanica, formated as below
  1. Title (EM 397 Term Paper: e.g., Dislocations in Epitaxial Thin Films).
  2. Tags (EM 397, Fall 2006, University of Texas at Austin, thin films, term paper)
  3. Body: (i) Describe the phenomenon. (ii) Explain how mechanics is relevant. (iii) Cite at least 1 journal article.
  • 10%: December 12 Tuesday (2:00-4:00 pm). 30 minute presentation. Use power point slides.
  • 10%: December 18 Monday.

A Recent Book: Meshfree Particle Methods, by Shaofan Li and Wing-Kam Liu

Meshfree Particle Methods is a comprehensive and systematic exposition of particle methods, meshfree Galerkin and partition of unity methods, molecular dynamics methods, and multiscale methods. It presents theoretical foundation, numerical algorithms, as well as applications. Since it was published in 2004, the first print has been sold out. The publisher is preparing the second print.

Cai Wei's picture

New Book: Computer Simulations of Dislocations, by Vasily V. Bulatov and Wei Cai

Companion web site http://micro.stanford.edu ISBN:0-19-852614-8, Hard cover, 304 pages, Nov. 2006, US $74.50.

This book presents a broad collection of models and computational methods - from atomistic to continuum - applied to crystal dislocations. Its purpose is to help students and researchers in computational materials sciences to acquire practical knowledge of relevant simulation methods. Because their behavior spans multiple length and time scales, crystal dislocations present a common ground for an in-depth discussion of a variety of computational approaches, including their relative strengths, weaknesses and inter-connections. The details of the covered methods are presented in the form of "numerical recipes" and illustrated by case studies. A suite of simulation codes and data files is made available on the book's website to help the reader "to learn-by-doing" through solving the exercise problems offered in the book. This book is part of an Oxford Series on Materials Modelling.

jqu's picture

New Book: Fundamentals of Micromechanics of Solids, by Jianmin Qu and Mohammed Cherkaoui

Fundamentals of Micromechanics of Solids, Jianmin Qu, Mohammed Cherkaoui
ISBN: 0-471-46451-1, Hardcover, 400 pages, August 2006, US $120.00

PART I: LINEAR MICROMECHANICS AND BASIC CONCEPTS

Chapter 1 INTRODUCTION

  • 1.1 Background and Motivation
  • 1.2 Objectives
  • 1.3 Organization of Book
  • 1.4 Notation Conventions
  • References

Chapter 2 BASIC EQUATIONS OF CONTINUUM MECHANICS

give you some introduction of my department

Department of Modern Mechanics

USTC's Department of Modern Mechanics, founded in 1958, first chaired by famous scientist, Prof. H.S. Tsien, is among the most prestigious in China.

The Department has 400 undergraduate students, 121 students doing Master degrees and 59 students studying for doctoral degrees. It is a major provider of high-caliber personnels to research institutes, universities, industry, commerce, management and government, both at home and abroad.

Joost Vlassak's picture

ES 246 projects

Each student creates a project that addresses a phenomenon or issue in plasticity theory, and presents it in class after the winter break. The scope of the projects is very wide: experimental, computational, or a critical discussion of one or more papers. The project contributes 30% of the grade, distributed as follows:

  • 5%: November 30 Thursday. Post your project proposal in iMechanica.
  1. Title. ES 246 project: e.g. Plastic buckling of plates.
  2. Tags. Use the following tags: ES 246, plasticity, Fall 2006, project
  3. Body. (i) Describe the project. (ii) Cite at least 1 journal article.
  • 5%: December 7 Thursday. Post a comment to critique the project proposal of at least 1 classmate.

A Wiki for Example Problems in University Mathematics

While studying (very diligently) for my upcoming midterm, I discovered a wonderful Wiki that provides problems and solutions for many collegiate math courses.

Carbon Nanotube Lecture on Nov 1st at MIT

Dr. John Hart from MIT is giving a carbon nanotube (CNT) tutorial at the International Symposoum on Nanomanufacturing (ISNM) at MIT on November 1st, Wednesday. Please see the following if you are interested.

 

Carbon Nanotubes: Fundamentals, synthesis, and applications

Dr. John Hart, MIT
November 1st
9.00 am - 12.30pm (with 1 break)

http://www.isnm2006.org/Professional_courses.html

Computational Science Graduate Fellowship Program

The Department of Energy is once again calling for applications to its Computational Science Graduate Fellowship (CSGF) program. These fellowships cover full tuition and provide a generous stipend for up to four years, and they also provide travel support and matching funds for a computer. Undergraduate seniors or first and second year graduate students are eligible to apply.

Additional information, including an online application, is available here. Applications are due by January 10, 2007

Zhigang Suo's picture

Statistical Mechanics

Update on 14 December 2019. By now I have taught undergraduate thermodynamics three times at Harvard. I have written up my lecture notes as a book, and posted the book online.

Here are sections that I have now:

Suhasini Gururaja's picture

Dr. M. Ramulu

Read biography here and here.

Taxonomy upgrade extras: 
Rui Huang's picture

From students' perspective

I like to keep the mindset of being a student, learning from all sources on all topics I am interested. Recently I have learned quite a lot about mechanics and mechanicians from Applied Mechanics News and its sister blogs and now iMechanica.

With a job as an assistant professor, I always try to motivate my students to become future mechanicians. For this reason, I started Modeling Place as a group blog in January and gently forced my students to participate. Out of the five students I have, two actively participate by posting frequently, two occasionally post, and one dropped out quickly after one post. Together, the blog has been doing reasonably well, in terms of both quantity and quality of posts.

I learned a few tricks in handling images and got to know some interesting works in the general area of mechanics. How about the students? What benefits have they received? I have to ask them. For one, I awarded one student with a little gift as the best post of the semester. More importantly, I believe that they are reading more than they used to do, thus gaining broader knowledge and interest in mechanics and related science. They not only read the posts in the blog but also read from other sources (online or not) to find something to post. Furthermore, they have a place to practice writing. It is a big step from reading to writing, not only for foreign students I think.

It may be still too soon to tell how well this works, but the students themselves should be able to tell us more. If you are a student, I encourage you to comment on this to tell the professors what you like or don't like about iMechanica. At this stage of development, much more features and benefits can be accomodated. Your ideas could shape the future of iMechanica and benefit all students and those considering themselves as students of life.

Teng Li's picture

nanoHUB: online simulations and more

The nanoHUB is a web-based initiative spearheaded by the NSF-funded Network for Computational Nanotechnology (NCN). Based at Purdue University and partnered by eight other universities, nanoHUB provides a web interface to numerous resources relevant to students and practitioners in nanotechnology. The cyber environment includes online courses and tutorials, proceedings of seminars, collaborative tools, and an interface for online simulation.

For example, you can view research seminars on nanoHUB through online slideshow with audio, powered by Breeze technology. You can go over the outline of the seminar, choose thumbnail views of the slides and even search text within the titles of the slides, then locate the content of interest and save some time. Another type of resource on nanoHUB is the online simulation tools, which run realtime on nanoHUB. No installation is needed.

The nanoHUB resources are open to public for free. You just need to register to use. In the last eight months, nanoHUB has served more than 10,000 users, with about 60,000 simulation jobs run and more than 10,000 videos viewed. The web server hits of nanoHUB reach 1 million in May 2006.

Teng Li's picture

A Virtual Tour of the 1906 Great Earthquake in Google Earth

The California earthquake of April 18, 1906 (one century ago today) ranks as one of the most significant earthquakes of all time. Today, its importance comes more from the wealth of scientific knowledge derived from it than from its sheer size --it marked the dawn of modern science of earthquakes.

U.S. Geological Survey (USGS) recently provides a virtual tour utilizing the geographic interactive software Google Earth to explain the scientific, engineering, and human dimensions of this earthquake. This virtual tour can help you visualize and understand the causes and effects of this and future earthquakes.

Enjoy this virtual tour to explore how Google Earth (and other new softwares...) can facilitate and improve the way we teach and conduct research.

Zhigang Suo's picture

Connexions: knowledge as commodities

(Originally posted on Applied Mechanics News on 2 May 2006)

A twelve-year old found a blueprint to assemble a computer in a magazine, and ordered parts on newegg.com, a website that listed parts from all vendors and comments on each part by customers. Both features were reassuring. When the parts arrived in mail a week or two later, the boy assembled the computer himself. In the process, he saved a substantial amount of money. He also learned a lot about computers, and about dealing with his parents.

The boy could do all these because computer parts are commodities, products that are produced by different companies but conforming to the same standards: all parts fit. Websites like newegg bring the parts from the companies directly to boys and girls of all ages, skipping middlemen like Dell.

Commoditization has also occurred in the software industry, largely due to the open-source movement that has produced the Linux operating system, as well as a large number of other software systems.

Can we also commoditize knowledge? This is precisely the mission of the Connexions Project, founded by the electrical engineer Richard Baraniuk, of Rice University, in 1999. The Project has been funded by the National Science Foundation and private donors, and has produced a system of software to enable anyone to author parts of knowledge (called modules). It also enables anyone to assemble parts into a functional product of knowledge (called a course), free of charge, under a Creative Commons open license. By January 2006, Connexions hosted over 2900 modules and 138 courses.

Connexions will likely have tremendous impact on the textbook industry, which has an annual revenue of 10 billion dollars in the US alone. The Project is also bringing free, up-to-date knowledge to developing countries, including North Karea.

Connexions will also likely to change the practice of scholarship. If you'd like to learn how Connexions works, you may visit the website of Connexions, or look at a course, or read a white paper written by the Connexions staff, or simply enjoy a video of an inspiring talk given by Professor Baraniuk to Google engineers.

Notes added on 15 July 2006. Wall Street Journal (13 July 2006) reported on Rice University's Press on line and print on demand.

Pages

Subscribe to RSS - education

Recent comments

More comments

Syndicate

Subscribe to Syndicate