Skip to main content

The Ruga Mechanics

Submitted by mazen diab on

Imechanica Journal Club: “The Ruga Mechanics”

Prepared by Mazen Diab, Ruike Zhao and Kyung-Suk Kim

Brown University, Providence, RI

Introduction

The ‘ruga’, a Latin term, means a single state of various corrugated material configurations, which form diverse 2D-patterns on solid surfaces, interfaces and in thin films. Typical ruga configurations include large-amplitude wrinkles, creases, folds, ridges, wrinklons, crinkles and crumples. While rugae (plural of ruga) in Latin originally meant variety of corrugated configurations, it has been narrowly used in anatomy (Wikipedia). In a broad sense, ruga structures are widely observed in Nature. They are on human, animal and plant skins, in the wings of insects, the surface of our brains, even the crust of the earth, the moon and the planets (Figure 1).

Ruga configurations have distinct geometrical characteristics, and each of them stands for an energetically monomorphic equilibrium configuration representing a single phase of ruga. Over the past half century important ruga phases have been identified – Biot for wrinkle [1], Gent and Cho for crease [2], Brau, et al. for period multiplication [3, 4], Sun, et al. & Pocivavsek, et al. for fold [5, 6], Cao and Hutchinson for ridge [7], Bowden, et al. for 2D wrinkles [8], Efimenko, et al. for hierarchical wrinkles [9], Ahmed, et al. for 2D ruga tessellation [10]. Diab, et al. recently constructed a comprehensive ruga phase diagram of a stiff surface boundary layer in a neo-Hoookean solid (figure 2B) [11, 12]. They showed that, similar to conventional material phase transitions for which a thermodynamic potential typically depicts the behavior, ruga phase transitions are naturally described by bifurcation analysis with a mechanical (structural) potential. Construction of iso-periodic [11, 12] and self-selective ruga phase diagrams [13] will not only enable analysis for coexistence, scaling or localization of multiple ruga phases, etc., but will also provide understanding on meso-scale self-organizing mechanisms that can be controlled by large-scale field parameters.

Recently, importance of ruga mechanics in science and technology appealed to public – NPR and Discover Magazine. In an application point of view, there has been an increasing interest in developing new classes of multi-functional soft composite materials at various length scales. For example, since nano-science has advanced to produce various 2D materials beyond graphene [14-18], we expect that nano ruga-structures in such 2D materials can create unprecedented functional properties. For examples of relatively large-scale engineering applications, the ability to control ruga patterns makes soft composites useful in a wide range of applications such as soft robotics, flexible electronics, constructing artificial skins, and morphing aircrafts and marine structures [19-34]. In addition, principles of ruga phase formation will uncover important self-organizing phenomena in brain science [35-37], medical science [38, 39] and geo science [40-43].



Figure 1: Ruga phases in nature and studies: a) scheme of ruga phases in 1D structure; b) 50nm gold film folds: blue-red: 0-2 MPa Mises stress; c) 2D ruga pattern on 10 nm ion beam implanted DLC on PDMS; d) graphene folds, on PDMS (top & side views); e) graphene nano sacks with “cargos”; f) 2D ruga patterns on an apple; g) brain cortex structure; h) 3D mapping of earth; i) 2D ruga tessellation and localization on the moon; j) carbon disk (top left image) and free-standing hollow carbon nanocones; k) paper folding; l) nanoribbons for high Memory Storage Density; m) folded sedimentary layers of Sullivan River, British Columbia.

 

Mechanics of major ruga phases and their transitions:

Wrinkle:

Over the past several decades, mechanics research revealed that wrinkle has the following primary characteristics: 1) critical wavelength and critical strain, 2) distinct material property dependence, 3) weak imperfection sensitivity and stable amplitude growth. The research provided relatively simple relation among the critical wavelength, stiffness ratio and thickness. However, dependence of the relationship on material properties of the film and the substrate, and loading conditions including pre-stretch and finite deformation has been steadily and extensively investigated [1, 42, 44-64]. While the onset criticality of the wrinkling was analyzed by first-order perturbation, growth rate of the wrinkle amplitude and imperfection sensitivity of the criticality required higher-order-perturbation post-buckling analysis typically with the Koiter method [11, 12, 65-69]. The wrinkle characteristics of weak imperfection sensitivity and stable amplitude growth have been attractive features of wrinkle for experimental measurement of the property of the film relative to that of the substrate or vice versa [70, 71]. In addition, hierarchical wrinkles with their frequencies clustered in broad scales have been observed, and cause of the clustering has been debated [4, 9].

Crease:

In contrast to wrinkle, crease has three distinct characteristics: localization of deformation, snap buckling with strong imperfection sensitivity and global irreversibility of deformation. For the first aspect, Gent & Cho [2] discovered the criticality and the mode of the crease localization. Later, Diab et al., [11, 12] uncovered that the crease localization is caused by cascade instability either from a fundamental state (instantaneous crease) or from a wrinkle state (setback crease). For the second aspect, a series of investigations [72-76] revealed that snap buckling of creasing is a consequence of bifurcation onto a branch of solutions extended from a subcritical state to a supercritical state. For the third aspect, the global irreversibility exhibits hysteresis in loading and unloading despite that the local deformation is elastic (reversible) everywhere [12, 74]. In addition, it is found that creasing is sensitive to imperfections [69].

Fold:

When wrinkle amplitude grows large, the wrinkles often forms folds with high aspect ratio amplitude for self-contact, period multiplication of the wrinkle to set the fold periodicity, and  subsequently leads to fold localization. The folds have attractive features for nano-manufacturing of surface nanostructures such as subsurface nano channels. Diverse characteristics of folding processes have been observed and investigated by several research groups. Those include folding of an elastic sheet floating on water [5], period multiplication of a wrinkle on a bilayer system, formation of periodic folds [6], folding of a graphene sheet on a PDMS [77], etc. The role of substrate nonlinearly in the post-buckling evolution of wrinkle has been revealed numerically by Sun, et al. [6] for fold, and further investigated by Hutchinson (?) [68] and Zhao, et al. [13]. However, a quantitative characterization of the critical conditions for the large amplitude wrinkle evolution is still elusive due to lack of analytical expressions of the wrinkle configuration with nonlinear finite deformation at the onset of period multiplication. Once the wrinkle surfaces make self-contacts for folding, some selective fold tips begin to advance into the substrate with a series of unfolding of nearby folds, leading to fold localization.

Ridge:

            Ridge is a ruga phase of localized bulge that exhibits mechanical characteristics similar to those of crease for localization and irreversible mode of hysteresis behavior. It is typically observed in a surface layer compressed by releasing a large pre-stretch strain. For example, depending on the level of pre-stretches of an incompressible neo-Hookean substrate, the wrinkle generally bifurcates to a single isolated ridge followed by development of periodic ridges through frequency and period multiplications. Ridges are formed through snap buckling and the configurational evolution is irreversible in general. Ridges often grow into ridge-folds at large compression of the film. ([13, 32, 69, 78, 79])

Delamination ruga:

            Delamination ruga develops when a thin surface-mounted film with is laterally compressed to be debonded. Blistering and telephone cord buckling of a thin film mounted on a stiff substrate was extensively studied in 1990s. In contrast, when a stiff film is delaminated through wrinkling on a soft substrate, the delamination process develops localized delamination ridges. The delamination ridges often transforms into delamination folds under large strain mismatch, typically observed in CVD grown films of graphene caused by large thermal strain mismatch. Isolation of bending localization on the debonded part of the film has attracted attention for potential use of delamination ruga in flexible electronics applications. Recently a delamination ruga phase diagram was proposed. ([80-86])

Two-dimensional Ruga:

Experimental observations of various 2D ruga phases such as periodic checkerboard, herringbone, labyrinth, crease and fold have been reported [8, 87-93]. Recently Ahmed et al., [10] showed that for a strain larger than 30 % the folds evolve in random orientations to create asymmetric disordered tessellation. Wrinkle instability of hyper-elastic halfspace under general biaxial compression wasstudied by Nowinski [94], and Usmani and Beatty [95]. However, it was not until recently that the community started to investigate the formation of the various 2D ruga phases of bilayer systems using numerical and/or analytical approaches [55, 96-105]. Most all of these studies haven’t considered the full sequential bifurcations of the various patterns at large strains. Many issues are still unexplained such as the disordered tessellation observed in [10], the labyrinthine pattern, mode jumping, coexistent of states, and the role of imperfections on the formation of the ruga patterns. More efforts are needed to develop analytical and numerical tools that are capable of handling the formation of the complex 2D ruga phases and transitions among them.

 



 

Figure 2:  A) FEM results of 1D ruga phases; B) ruga phase diagram of graded material; C) various ruga phases delineated by the surfaces of nonlinear bifurcations; D) Hysteresis loops of creasing.

 

Applications of ruga mechanics

            Typically ruga structures are formed with large configuational change which requires high compliance of the constituents at least at a reduced dimension. Such compliance is commonly encountered in a very high aspect ratio thin film structures, soft materials or very large-scale slender structures. Therefore, ruga mechanics is expected play important roles in nano, bio and geo science and technology.

Advanced materials research and development:

Ruga structures provide periodic symmetry-breaking sites where diverse quantum states can be generated in 2D materials. In turn, collective behavior of the quantum states offers new functional properties of the material, such as properties of electron transport and/or molecular-level reactivity. Understanding and controlling of such material properties will make quantum leaps in advancing nano science and technology for diverse applications like multifunctional electronics including nanoscale spintronic and flexible nano-electronics, optoelectronics of meta-materials.([16-18, 21, 22, 28, 31, 84, 106-114])

Bio science research and development:

Among many potential applications of ruga mechanics in bio science and technology, we have many examples of application, such as hierarchical ruga for bio adhesion control with super hydrophobic/hydrophilic surfaces including anti-biofouling, wrapping ruga of 2D materials for drug delivery, general ruga phases for bio-inspired technology, reversibility of sulcus ruga deformations for studying TBI, growth ruga for evolution of brain structures, and crinkle ruga for bio-informatics with dry sequencing of DNA or protein structures. ([29, 30, 38, 39, 113, 115-119])

Geo science research and development:

Ruga mechanics will play significant roles in studying geological wrinkles, folds and  ridges, including microbial shape analysis of sedimentary wrinkle structures, ruga localization of folding for evolution of thrust faults, interface ruga developed by gravity in the earth, the moon and the planets, multi-layer ruga for evolution of mineral deposition, ruga structures in volcanic lava flow, etc. Recently, the GRAIL project of sensing gravitational field gradients revealed many interesting ruga structures in the earth, the moon and the planets. ([40-43])

Computational science research and development:

            Much of recent progress in ruga mechanics research was possible thanks to advancement of computational mechanics, in particular, finite element method and hybrid computational techniques for multi-scale analysis. However, we still have lots of challenge in developing reliable numerical methods for critical bifurcation processes with multiple quasi- convexities in the potential, for dynamics of ruga deformations and for clustered wrinkling in broad scales, for scaling analysis of co-existing ruga distribution, for motion analysis of wrinklon rugae [120-122].

Experimental method research and development:

            Experimental frequency control of ruga structures over an appreciable area is still a great challenge. In particular, nano-imprinting, nano-lithography, wetting and adhesion control with ruga structures are important experimental technology to be developed further. Material property characterization with ruga mechanics is a good experimental technique to be developed for materials in extreme dimensions or under extreme conditions. Experimental ruga dynamics is another challenging area of research.

In this journal club of imechanica of this month, we wish that further issues in ruga mechanics can be discussed actively, including more mathematical issues.

 

 

 

 

Reference List

 

[1] A., B.M. 1965 Mechanics of incremental deformation. New York, NY.

[2] Gent, A.N. & Cho, I.S. 1999 Surface Instabilities in Compressed or Bent Rubber Blocks. Rubber Chemistry and Technology 72, 253-262. (doi:10.5254/1.3538798).

[3] Brau, F., Vandeparre, H., Sabbah, A., Poulard, C., Boudaoud, A. & Damman, P. 2010 Multiple-length-scale elastic instability mimics parametric resonance of nonlinear oscillators. Nature Physics 7, 56-60. (doi:10.1038/nphys1806).

[4] M. Diab, J.T., Max Monn & K.-S. Kim  2015 Wrinkle Spectroscopy for Soft Multilayer Materials. to be submitted.

[5] Pocivavsek, L., Dellsy, R., Kern, A., Johnson, S., Lin, B.H., Lee, K.Y.C. & Cerda, E. 2008 Stress and fold localization in thin elastic membranes. Science 320, 912-916. (doi:10.1126/science.1154069).

[6] Sun, J.Y., Xia, S., Moon, M.W., Oh, K.H. & Kim, K.S. 2011 Folding wrinkles of a thin stiff layer on a soft substrate. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 468, 932-953. (doi:10.1098/rspa.2011.0567).

[7] Cao, Y. & Hutchinson, J.W. 2012 Wrinkling Phenomena in Neo-Hookean Film/Substrate Bilayers. Journal of Applied Mechanics 79, 031019. (doi:10.1115/1.4005960).

[8] Bowden, N., Brittain, S., Evans, A.G., Hutchinson, J.W. & Whitesides, G.M. 1998 Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393, 146-149. (doi:10.1038/30193).

[9] Efimenko, K., Rackaitis, M., Manias, E., Vaziri, A., Mahadevan, L. & Genzer, J. 2005 Nested self-similar wrinkling patterns in skins. Nature materials 4, 293-297. (doi:10.1038/nmat1342).

[10] Faruque Ahmed, S., Nagashima, S., Lee, J.Y., Lee, K.-R., Kim, K.-S. & Moon, M.-W. 2014 Self-assembled folding of a biaxially compressed film on a compliant substrate. Carbon 76, 105-112. (doi:10.1016/j.carbon.2014.04.056).

[11] Diab, M., Zhang, T., Zhao, R., Gao, H. & Kim, K.S. 2013 Ruga mechanics of creasing: from instantaneous to setback creases. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 469, 20120753-20120753. (doi:10.1098/rspa.2012.0753).

[12] Diab, M. & Kim, K.S. 2014 Ruga-formation instabilities of a graded stiffness boundary layer in a neo-Hookean solid. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, 20140218-20140218. (doi:10.1098/rspa.2014.0218).

[13] Ruike Zhao, T.Z., Huajian Gao & Kyung-Suk Kim. 2015 Phase diagram evolution pathways of wrinkling, creasing and folding in a bilayer system. to be submitted.

[14] Jia, Z., Peng, C., Lou, J. & Li, T. 2012 A map of competing buckling-driven failure modes of substrate-supported thin brittle films. Thin Solid Films 520, 6576-6580. (doi:10.1016/j.tsf.2012.07.011).

[15] Zhang, T., Li, X. & Gao, H. 2014 Defects controlled wrinkling and topological design in graphene. J Mech Phys Solids 67, 2-13. (doi:10.1016/j.jmps.2014.02.005).

[16] Zhang, Z. & Li, T. 2011 Determining graphene adhesion via substrate-regulated morphology of graphene. Journal of Applied Physics 110, 083526. (doi:10.1063/1.3656720).

[17] Zhu, S. & Li, T. 2014 Hydrogenation-assisted graphene origami and its application in programmable molecular mass uptake, storage, and release. ACS nano 8, 2864-2872. (doi:10.1021/nn500025t).

[18] Zhu, S. & Li, T. 2014 Wrinkling Instability of Graphene on Substrate-Supported Nanoparticles. Journal of Applied Mechanics 81, 061008. (doi:10.1115/1.4026638).

[19] Chung, J.Y., Youngblood, J.P. & Stafford, C.M. 2007 Anisotropic wetting on tunable micro-wrinkled surfaces. Soft Matter 3, 1163-1169. (doi:10.1039/B705112c).

[20] Chan, E.P., Smith, E.J., Hayward, R.C. & Crosby, A.J. 2008 Surface Wrinkles for Smart Adhesion. Advanced materials 20, 711-716. (doi:10.1002/adma.200701530).

[21] Kim, D.H., Ahn, J.H., Choi, W.M., Kim, H.S., Kim, T.H., Song, J., Huang, Y.Y., Liu, Z., Lu, C. & Rogers, J.A. 2008 Stretchable and foldable silicon integrated circuits. Science 320, 507-511. (doi:10.1126/science.1154367).

[22] Ko, H.C., Stoykovich, M.P., Song, J., Malyarchuk, V., Choi, W.M., Yu, C.J., Geddes, J.B., 3rd, Xiao, J., Wang, S., Huang, Y., et al. 2008 A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454, 748-753. (doi:10.1038/nature07113).

[23] Lin, P.-C., Vajpayee, S., Jagota, A., Hui, C.-Y. & Yang, S. 2008 Mechanically tunable dry adhesive from wrinkled elastomers. Soft Matter 4, 1830. (doi:10.1039/b802848f).

[24] Khare, K., Zhou, J. & Yang, S. 2009 Tunable open-channel microfluidics on soft poly(dimethylsiloxane) (PDMS) substrates with sinusoidal grooves. Langmuir 25, 12794–12799. (doi:10.1021/la901736n).

[25] Rahmawan, Y., Moon, M.W., Kim, K.S., Lee, K.R. & Suh, K.Y. 2010 Wrinkled, dual-scale structures of diamond-like carbon (DLC) for superhydrophobicity. Langmuir 26, 484-491. (doi:10.1021/la902129k).

[26] Rogers, J.A., Someya, T. & Huang, Y. 2010 Materials and mechanics for stretchable electronics. Science 327, 1603-1607. (doi:10.1126/science.1182383).

[27] Chen, A., Lieu, D.K., Freschauf, L., Lew, V., Sharma, H., Wang, J., Nguyen, D., Karakikes, I., Hajjar, R.J., Gopinathan, A., et al. 2011 Shrink-film configurable multiscale wrinkles for functional alignment of human embryonic stem cells and their cardiac derivatives. Advanced materials 23, 5785-5791. (doi:10.1002/adma.201103463).

[28] Kim, J.B., Kim, P., Pégard, N.C., Oh, S.J., Kagan, C.R., Fleischer, J.W., Stone, H.A. & Loo, Y.-L. 2012 Wrinkles and deep folds as photonic structures in photovoltaics. Nature Photonics 6, 327-332. (doi:10.1038/nphoton.2012.70).

[29] Zhang, T., Zhang, Z., Kim, K.-S. & Gao, H. 2012 An accordion model integrating self-cleaning, strong attachment and easy detachment functionalities of gecko adhesion. Journal of Adhesion Science and Technology 28, 226-239. (doi:10.1080/01694243.2012.691788).

[30] Zhang, Z., Zhang, T., Zhang, Y.W., Kim, K.S. & Gao, H. 2012 Strain-controlled switching of hierarchically wrinkled surfaces between superhydrophobicity and superhydrophilicity. Langmuir 28, 2753-2760. (doi:10.1021/la203934z).

[31] Li, R., Yi, H., Hu, X., Chen, L., Shi, G., Wang, W. & Yang, T. 2013 Generation of diffraction-free optical beams using wrinkled membranes. Scientific reports 3. (doi:10.1038/srep02775).

[32] Cao, C., Chan, H.F., Zang, J., Leong, K.W. & Zhao, X. 2014 Harnessing localized ridges for high-aspect-ratio hierarchical patterns with dynamic tunability and multifunctionality. Advanced materials 26, 1763-1770. (doi:10.1002/adma.201304589).

[33] Terwagne, D., Brojan, M. & Reis, P.M. 2014 Smart morphable surfaces for aerodynamic drag control. Advanced materials 26, 6608-6611. (doi:10.1002/adma.201401403).

[34] Wang, P., Casadei, F., Shan, S., Weaver, J.C. & Bertoldi, K. 2014 Harnessing Buckling to Design Tunable Locally Resonant Acoustic Metamaterials. Phys Rev Lett 113. (doi:10.1103/PhysRevLett.113.014301).

[35] Cullen, D.K., Browne, K.D., Xu, Y., Adeeb, S., Wolf, J.A., McCarron, R.M., Yang, S., Chavko, M. & Smith, D.H. 2011 Blast-induced color change in photonic crystals corresponds with brain pathology. Journal of neurotrauma 28, 2307-2318. (doi:10.1089/neu.2011.1718).

[36] Budday, S., Raybaud, C. & Kuhl, E. 2014 A mechanical model predicts morphological abnormalities in the developing human brain. Scientific reports 4, 5644. (doi:10.1038/srep05644).

[37] Tallinen, T., Chung, J.Y., Biggins, J.S. & Mahadevan, L. 2014 Gyrification from constrained cortical expansion. Proceedings of the National Academy of Sciences of the United States of America 111, 12667-12672. (doi:10.1073/pnas.1406015111).

[38] Dervaux, J., Couder, Y., Guedeau-Boudeville, M.-A. & Ben Amar, M. 2011 Shape Transition in Artificial Tumors: From Smooth Buckles to Singular Creases. Phys Rev Lett 107. (doi:10.1103/PhysRevLett.107.018103).

[39] Li, B., Cao, Y.-P., Feng, X.-Q. & Gao, H. 2012 Mechanics of morphological instabilities and surface wrinkling in soft materials: a review. Soft Matter 8, 5728. (doi:10.1039/c2sm00011c).

[40] Pruss, S., Fraiser, M. & Bottjer, D.J. 2004 Proliferation of Early Triassic wrinkle structures: Implications for environmental stress following the end-Permian mass extinction. Geology 32, 461. (doi:10.1130/g20354.1).

[41] Porada, H. & Bouougri, E.H. 2007 Wrinkle structures—a critical review. Earth-Science Reviews 81, 199-215. (doi:10.1016/j.earscirev.2006.12.001).

[42] Li, K., Ge, D. & Cai, S. 2012 Gravity-induced wrinkling of thin films on soft substrates. EPL (Europhysics Letters) 100, 54004. (doi:10.1209/0295-5075/100/54004).

[43] Mariotti, G., Pruss, S.B., Perron, J.T. & Bosak, T. 2014 Microbial shaping of sedimentary wrinkle structures. Nature Geoscience 7, 736-740. (doi:10.1038/ngeo2229).

[44] Biot, M.A. 1960 Instability of a continuously inhomogeneous viscoelastic half-space under initial stress. Journal of the Franklin Institute 270, 190-201. (doi:10.1016/0016-0032(60)90589-5).

[45] A., B.M. 1963 Surface instability of rubber in compression. Applied Scientific Research 12, 168–182. (doi:10.1007/BF03184638).

[46] Nowinski, J.L., Mechanical, U.o.D.D.o. & Engineering, A. 1968 On the Surface Instability of an Isotropic Highly Elastic Half-space, Department of Mechanical and Aerospace Engineering, University of Delaware.

[47] H.G., A. 1969 Analysis and design of structural sandwich panels. New York, NY, Pergamon press.

[48] Shield, T.W., Kim, K.S. & Shield, R.T. 1994 The Buckling of an Elastic Layer Bonded to an Elastic Substrate in Plane Strain. Journal of Applied Mechanics 61, 231. (doi:10.1115/1.2901434).

[49] Steigmann, D.J. & Ogden, R.W. 1997 Plane deformations of elastic solids with intrinsic boundary elasticity. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 453, 853-877. (doi:10.1098/rspa.1997.0047).

[50] Cerda, E. & Mahadevan, L. 1998 Conical surfaces and crescent singularities in crumpled sheets. Phys Rev Lett 80, 2358-2361. (doi:10.1103/PhysRevLett.80.2358).

[51] Huang, R. & Suo, Z. 2002 Wrinkling of a compressed elastic film on a viscous layer. Journal of Applied Physics 91, 1135. (doi:10.1063/1.1427407).

[52] Huang, R. & Suo, Z. 2002 Instability of a compressed elastic film on a viscous layer. International Journal of Solids and Structures 39, 1791-1802. (doi:10.1016/s0020-7683(02)00011-2).

[53] Cerda, E. & Mahadevan, L. 2003 Geometry and physics of wrinkling. Phys Rev Lett 90, 074302. (doi:10.1103/PhysRevLett.90.074302).

[54] Huang, R. 2005 Kinetic wrinkling of an elastic film on a viscoelastic substrate. J Mech Phys Solids 53, 63-89. (doi:10.1016/j.jmps.2004.06.007).

[55] Huang, Z.Y., Hong, W. & Suo, Z. 2005 Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. J Mech Phys Solids 53, 2101-2118. (doi:10.1016/j.jmps.2005.03.007).

[56] Huang, J., Juszkiewicz, M., de Jeu, W.H., Cerda, E., Emrick, T., Menon, N. & Russell, T.P. 2007 Capillary wrinkling of floating thin polymer films. Science 317, 650-653. (doi:10.1126/science.1144616).

[57] Lee, D., Triantafyllidis, N., Barber, J.R. & Thouless, M.D. 2008 Surface instability of an elastic half space with material properties varying with depth. J Mech Phys Solids 56, 858-868. (doi:10.1016/j.jmps.2007.06.010).

[58] Song, J., Jiang, H., Liu, Z.J., Khang, D.Y., Huang, Y., Rogers, J.A., Lu, C. & Koh, C.G. 2008 Buckling of a stiff thin film on a compliant substrate in large deformation. International Journal of Solids and Structures 45, 3107-3121. (doi:10.1016/j.ijsolstr.2008.01.023).

[59] Hobbie, E.K., Simien, D.O., Fagan, J.A., Huh, J.Y., Chung, J.Y., Hudson, S.D., Obrzut, J., Douglas, J.F. & Stafford, C.M. 2010 Wrinkling and Strain Softening in Single-Wall Carbon Nanotube Membranes. Phys Rev Lett 104, 125505. (doi:10.1103/Physrevlett.104.125505).

[60] Yin, J. & Chen, X. 2010 Elastic buckling of gradient thin films on compliant substrates. Philosophical Magazine Letters 90, 423-433. (doi:10.1080/09500831003745258).

[61] Davis, C.S. & Crosby, A.J. 2011 Mechanics of wrinkled surface adhesion. Soft Matter 7, 5373. (doi:10.1039/c1sm05146f).

[62] King, H., Schroll, R.D., Davidovitch, B. & Menon, N. 2012 Elastic sheet on a liquid drop reveals wrinkling and crumpling as distinct symmetry-breaking instabilities. Proceedings of the National Academy of Sciences of the United States of America 109, 9716-9720. (doi:10.1073/pnas.1201201109).

[63] Chen, Y.-C. & Crosby, A.J. 2013 Wrinkling of inhomogeneously strained thin polymer films. Soft Matter 9, 43. (doi:10.1039/c2sm26822a).

[64] Semler, M.R., Harris, J.M. & Hobbie, E.K. 2014 Wrinkling and folding of nanotube-polymer bilayers. The Journal of chemical physics 141, 044901. (doi:10.1063/1.4887775).

[65] W.T., K. 1945 On the stability of elastic equilibrium (in Dutch with English summary).

 , Techn. Univ. of Delft.

[66] Hutchinson, J.W., Koiter, W. T. . 1970 Postbuckling theory Applied Mechanics Reviews 23, 1353-1366.

[67] Budiansky, B. 1974 Theory of Buckling and Post-Buckling Behavior of Elastic Structures. Adv. Appl. Mech. 14, 1-65. (doi:10.1016/s0065-2156(08)70030-9).

[68] Hutchinson, J.W. 2013 The role of nonlinear substrate elasticity in the wrinkling of thin films. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 371, 20120422. (doi:10.1098/rsta.2012.0422).

[69] Cao, Y. & Hutchinson, J.W. 2011 From wrinkles to creases in elastomers: the instability and imperfection-sensitivity of wrinkling. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 468, 94-115. (doi:10.1098/rspa.2011.0384).

[70] Stafford, C.M., Harrison, C., Beers, K.L., Karim, A., Amis, E.J., VanLandingham, M.R., Kim, H.C., Volksen, W., Miller, R.D. & Simonyi, E.E. 2004 A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nature materials 3, 545-550. (doi:10.1038/nmat1175).

[71] Choi, H.J., Kim, J.H., Lee, H.J., Song, S.A., Lee, H.J., Han, J.H. & Moon, M.W. 2009 Wrinkle-Based Measurement of Elastic Modulus of Nano-Scale Thin Pt Film Deposited on Polymeric Substrate: Verification and Uncertainty Analysis. Experimental Mechanics 50, 635-641. (doi:10.1007/s11340-009-9243-8).

[72] Hohlfeld, E.B. 2008 Creasing, point-bifurcations, and the spontaneous breakdown of scale-invariance, Harvad University.

[73] Hong, W., Zhao, X. & Suo, Z. 2009 Formation of creases on the surfaces of elastomers and gels. Applied Physics Letters 95, 111901. (doi:10.1063/1.3211917).

[74] Hohlfeld, E. & Mahadevan, L. 2011 Unfolding the Sulcus. Phys Rev Lett 106. (doi:10.1103/Physrevlett.106.105702).

[75] Hohlfeld, E. & Mahadevan, L. 2012 Scale and Nature of Sulcification Patterns. Phys Rev Lett 109, 025701. (doi:10.1103/Physrevlett.109.025701).

[76] Hohlfeld, E. 2013 Coexistence of Scale-Invariant States in Incompressible Elastomers. Phys Rev Lett 111. (doi:10.1103/PhysRevLett.111.185701).

[77] W.-K. Seong, J.-Y.L., K.-R. Lee, J. Bae, J.-H. Jung, M. Diab, M.-W. Moon, K.-S. Kim, J. Ihm 2014 Conformational evolution of compressed graphene on Soft Substrates. To be submitted.

[78] Zang, J.F., Zhao, X.H., Cao, Y.P. & Hutchinson, J.W. 2012 Localized ridge wrinkling of stiff films on compliant substrates. J Mech Phys Solids 60, 1265-1279. (doi:DOI 10.1016/j.jmps.2012.03.009).

[79] Takei, A., Jin, L., Hutchinson, J.W. & Fujita, H. 2014 Ridge localizations and networks in thin films compressed by the incremental release of a large equi-biaxial pre-stretch in the substrate. Advanced materials 26, 4061-4067. (doi:10.1002/adma.201306162).

[80] Moon, M.W., Jensen, H.M., Hutchinson, J.W., Oh, K.H. & Evans, A.G. 2002 The characterization of telephone cord buckling of compressed thin films on substrates. J Mech Phys Solids 50, 2355-2377. (doi:10.1016/s0022-5096(02)00034-0).

[81] L.B. Freund, S.S. 2003 Thin Film Materials: Stress, Defect Formation and Surface Evolution, Cambridge University Press.

[82] Moon, M.W., Lee, K.R., Oh, K.H. & Hutchinson, J.W. 2004 Buckle delamination on patterned substrates. Acta Materialia 52, 3151-3159. (doi:10.1016/j.actamat.2004.03.014).

[83] Mei, H., Huang, R., Chung, J.Y., Stafford, C.M. & Yu, H.-H. 2007 Buckling modes of elastic thin films on elastic substrates. Applied Physics Letters 90, 151902. (doi:10.1063/1.2720759).

[84] Zang, J., Ryu, S., Pugno, N., Wang, Q., Tu, Q., Buehler, M.J. & Zhao, X. 2013 Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nature materials 12, 321-325. (doi:10.1038/nmat3542).

[85] Wang, Q.M. & Zhao, X.H. 2014 Phase Diagrams of Instabilities in Compressed Film-Substrate Systems. J Appl Mech-T Asme 81, 051004. (doi:Doi 10.1115/1.4025828).

[86] Zhang, K. & Arroyo, M. 2014 Understanding and strain-engineering wrinkle networks in supported graphene through simulations. J Mech Phys Solids 72, 61-74. (doi:10.1016/j.jmps.2014.07.012).

[87] Tanaka, T., Sun, S.-T., Hirokawa, Y., Katayama, S., Kucera, J., Hirose, Y. & Amiya, T. 1987 Mechanical instability of gels at the phase transition. Nature 325, 796-798. (doi:10.1038/325796a0).

[88] Huck, W.T.S., Bowden, N., Onck, P., Pardoen, T., Hutchinson, J.W. & Whitesides, G.M. 2000 Ordering of Spontaneously Formed Buckles on Planar Surfaces. Langmuir 16, 3497-3501. (doi:10.1021/la991302l).

[89] Lin, P.-C. & Yang, S. 2007 Spontaneous formation of one-dimensional ripples in transit to highly ordered two-dimensional herringbone structures through sequential and unequal biaxial mechanical stretching. Applied Physics Letters 90, 241903. (doi:10.1063/1.2743939).

[90] Trujillo, V., Kim, J. & Hayward, R.C. 2008 Creasing instability of surface-attached hydrogels. Soft Matter 4, 564. (doi:10.1039/b713263h).

[91] Breid, D. & Crosby, A.J. 2009 Surface wrinkling behavior of finite circular plates. Soft Matter 5, 425. (doi:10.1039/b807820c).

[92] Yoon, J., Kim, J. & Hayward, R.C. 2010 Nucleation, growth, and hysteresis of surface creases on swelled polymer gels. Soft Matter 6, 5807. (doi:10.1039/c0sm00372g).

[93] Kim, P., Abkarian, M. & Stone, H.A. 2011 Hierarchical folding of elastic membranes under biaxial compressive stress. Nature materials 10, 952-957. (doi:10.1038/nmat3144).

[94] Nowinski, J.L. 1969 Surface Instability of a Half-space under High Two-dimensional Compression. Journal of the Franklin Institute 288, 367-376. (doi:10.1016/0016-0032(69)90017-9).

[95] Usmani, S.A. & Beatty, M.F. 1974 On the surface instability of a highly elastic half-space. Journal of Elasticity 4, 249-263. (doi:10.1007/bf00048609).

[96] Chen, X. & Hutchinson, J.W. 2004 Herringbone buckling patterns of compressed thin films on compliant substrates. J Appl Mech-T Asme 71, 597-603. (doi:10.1115/1.1756141).

[97] Chen, X. & Hutchinson, J.W. 2004 A family of herringbone patterns in thin films. Scripta Materialia 50, 797-801. (doi:10.1016/j.scriptamat.2003.11.035).

[98] Mahadevan, L. & Rica, S. 2005 Self-organized origami. Science 307, 1740. (doi:10.1126/science.1105169).

[99] Audoly, B. & Boudaoud, A. 2008 Buckling of a stiff film bound to a compliant substrate - Part I: Formulation, linear stability of cylindrical patterns, secondary bifurcations. J Mech Phys Solids 56, 2401-2421. (doi:10.1016/j.jmps.2008.03.003).

[100] Audoly, B. & Boudaoud, A. 2008 Buckling of a stiff film bound to a compliant substrate - Part II: A global scenario for the formation of herringbone pattern. J Mech Phys Solids 56, 2422-2443. (doi:DOI 10.1016/j.jmps.2008.03.002).

[101] Audoly, B. & Boudaoud, A. 2008 Buckling of a stiff film bound to a compliant substrate - Part III: Herringbone solutions at large buckling parameter. J Mech Phys Solids 56, 2444-2458. (doi:10.1016/j.jmps.2008.03.001).

[102] Song, J., Jiang, H., Choi, W.M., Khang, D.Y., Huang, Y. & Rogers, J.A. 2008 An analytical study of two-dimensional buckling of thin films on compliant substrates. Journal of Applied Physics 103, 014303. (doi:10.1063/1.2828050).

[103] Cai, S., Breid, D., Crosby, A.J., Suo, Z. & Hutchinson, J.W. 2011 Periodic patterns and energy states of buckled films on compliant substrates. J Mech Phys Solids 59, 1094-1114. (doi:10.1016/j.jmps.2011.02.001).

[104] Kohn, R.V. & Nguyen, H.-M. 2012 Analysis of a Compressed Thin Film Bonded to a Compliant Substrate: The Energy Scaling Law. Journal of Nonlinear Science 23, 343-362. (doi:10.1007/s00332-012-9154-1).

[105] Tallinen, T., Biggins, J.S. & Mahadevan, L. 2013 Surface Sulci in Squeezed Soft Solids. Phys Rev Lett 110. (doi:10.1103/PhysRevLett.110.024302).

[106] Ritchie, L., Xiao, G., Ji, Y., Chen, T., Chien, C., Zhang, M., Chen, J., Liu, Z., Wu, G. & Zhang, X. 2003 Magnetic, structural, and transport properties of the Heusler alloys Co2MnSi and NiMnSb. Physical Review B 68. (doi:10.1103/PhysRevB.68.104430).

[107] Liu, X., Mazumdar, D., Schrag, B., Shen, W. & Xiao, G. 2004 Magnetization reversal of submicrometer Co rings with uniaxial anisotropy via scanning magnetoresistance microscopy. Physical Review B 70. (doi:10.1103/PhysRevB.70.014407).

[108] Vachon, M.A., Koutroulakis, G., Mitrović, V.F., Ma, O., Marston, J.B., Reyes, A.P., Kuhns, P., Coldea, R. & Tylczynski, Z. 2011 The nature of the low-energy excitations in the short-range-ordered region of Cs2CuCl4as revealed by133Cs nuclear magnetic resonance. New Journal of Physics 13, 093029. (doi:10.1088/1367-2630/13/9/093029).

[109] Cao, T., Wang, G., Han, W., Ye, H., Zhu, C., Shi, J., Niu, Q., Tan, P., Wang, E., Liu, B., et al. 2012 Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature communications 3, 887. (doi:10.1038/ncomms1882).

[110] Levendorf, M.P., Kim, C.J., Brown, L., Huang, P.Y., Havener, R.W., Muller, D.A. & Park, J. 2012 Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 488, 627-632. (doi:10.1038/nature11408).

[111] Liu, Z., Gong, Y., Zhou, W., Ma, L., Yu, J., Idrobo, J.C., Jung, J., MacDonald, A.H., Vajtai, R., Lou, J., et al. 2013 Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride. Nature communications 4, 2541. (doi:10.1038/ncomms3541).

[112] Kim, K., Lee, Z., Malone, B.D., Chan, K.T., Alemán, B., Regan, W., Gannett, W., Crommie, M.F., Cohen, M.L. & Zettl, A. 2011 Multiply folded graphene. Physical Review B 83, 245433.

[113] Chen, Y., Guo, F., Qiu, Y., Hu, H., Kulaots, I., Walsh, E. & Hurt, R.H. 2013 Encapsulation of particle ensembles in graphene nanosacks as a new route to multifunctional materials. ACS nano 7, 3744-3753. (doi:10.1021/nn3055913).

[114] Qin, Z., Taylor, M., Hwang, M., Bertoldi, K. & Buehler, M.J. 2014 Effect of wrinkles on the surface area of graphene: toward the design of nanoelectronics. Nano letters 14, 6520-6525. (doi:10.1021/nl503097u).

[115] Ben Amar, M. & Goriely, A. 2005 Growth and instability in elastic tissues. J Mech Phys Solids 53, 2284-2319. (doi:10.1016/j.jmps.2005.04.008).

[116] Goriely, A. & Ben Amar, M. 2005 Differential Growth and Instability in Elastic Shells. Phys Rev Lett 94. (doi:10.1103/PhysRevLett.94.198103).

[117] Li, B., Jia, F., Cao, Y.-P., Feng, X.-Q. & Gao, H. 2011 Surface Wrinkling Patterns on a Core-Shell Soft Sphere. Phys Rev Lett 106. (doi:10.1103/PhysRevLett.106.234301).

[118] Ciarletta, P. 2013 Buckling Instability in Growing Tumor Spheroids. Phys Rev Lett 110. (doi:10.1103/PhysRevLett.110.158102).

[119] Jia, F., Li, B., Cao, Y.-P., Xie, W.-H. & Feng, X.-Q. 2015 Wrinkling pattern evolution of cylindrical biological tissues with differential growth. Physical Review E 91. (doi:10.1103/PhysRevE.91.012403).

[120] Vandeparre, H., Piñeirua, M., Brau, F., Roman, B., Bico, J., Gay, C., Bao, W., Lau, C.N., Reis, P.M. & Damman, P. 2011 Wrinkling Hierarchy in Constrained Thin Sheets from Suspended Graphene to Curtains. Phys Rev Lett 106, 224301 (doi:10.1103/PhysRevLett.106.224301).

[121] Meng, L., Su, Y., Geng, D., Yu, G., Liu, Y., Dou, R.-F., Nie, J.-C. & He, L. 2013 Hierarchy of graphene wrinkles induced by thermal strain engineering. Applied Physics Letters 103, 251610. (doi:10.1063/1.4857115).

[122] Korznikova, E.A. & Dmitriev, S.V. 2014 Moving wrinklon in graphene nanoribbons. Journal of Physics D: Applied Physics 47, 345307. (doi:10.1088/0022-3727/47/34/345307).