User login

Navigation

You are here

ES 240

Nanshu Lu's picture

ABAQUS Tutorial and Assignment #1

1-1 ABAQUS Tutorial: Schedule & Proceedings

1-2 Learning ABAQUS: Begin with ABAQUS Command

1-3 Computer Assignment #1: Plate with circular hole

1-4 CAE Example: Having a sense of ABAQUS CAE

 

Zhigang Suo's picture

Trusses

Notes on the stiffness matrix formulation, used for ES 120, Introduction to the Mechanics of Solids, a sophomore course. This material will not be covered in ES 240, but might provide helpful reading if you do not have this background.

Return to the outline of the course.

Zhigang Suo's picture

Solid Mechanics Homework 31-33

31. A machine on a cantilever
32.  A beam on simple supports
33. Vibration of piano strings

Return to the outline of the course.

textbook

Though not that original, I want to recommend Timoshenko. Since many people have mentioned it already, I will discuss a Brief on Tensor Analysis by James Simmonds. Though not always useful, I sometimes use it to remember tensor rules that I have forgotten. The book is divided into chapters as follows:

 

I: Vectors and Tensors

II: General Bases and Tensor Notation

III: Newton's Law and Tensor Calculus

IV: Gradient, Del Operator, Covariant Differentiation, Divergence Theorem

Again, sometime it is not that useful and you spend your time trying to read it while not learning much, but it does come in handy sometimes. You can see the amazon link:

Amazon

Nanshu Lu's picture

For those who attended office hour today (Oct. 26)

After discussion with Xuanhe, I believe that B=0 for Q21 because there's no cut-and-weld operation here. Then the solusion is exactly the Lame Solution in Cylindrical Shape as in Q8.

What do you think?

Xuanhe Zhao's picture

Elasticity: Theory, Applications, and Numerics by Martin H. Sadd

I would like to recommend "Elasticity: Theory, Applications, and Numerics" by Prof. Martin H. Sadd as a reference for ES240. The book, as its name indicated, is mainly focused on elasticity theory and its applications, but also discusses numerical methods such as finite element method and boundary element method.

Prof. Martin H. Sadd, organized the book into two parts: I. foundations, and II Advanced topics. In part I, the book clearly outlines the basic equations of elasticity, i.e. strain/displacement relation, Hooke's law, and equilibrium equation. The other context of part I is devoted to the formulation and solution of two-dimensional problems. This structure matches the progress of our class very well.

The second part of the book begins with the discussion of anisotropic elasticity, thermo-elasticity, and micromechanics. These topics are complementary to the notes of ES240, and helpful in solving homework problems. In its last chapter, the book introduced finite element method and boundary element method.

Question 16

Book Title: Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue (Second Edition, Third Edition released earlier this year)

Author: Norman E. Dowling

Amazon.com Review Link

The book starts with a general overview and introduction to the mechanics of materials, but later emphasizes deformation, fracture and fatigue of materials. The following is a list of the chapters in the second edition:

(1) Introduction- Discusses types of material failure, design and materials selection, technological challenges, and the economic importance of fracture.

Zhigang Suo's picture

Vibration

“An Introduction to the Mechanics of Solids” by S. H. Crandall, N.C. Dahl, and T. J. Lardner

“An Introduction to the Mechanics of Solids” by S. H. Crandall, N.C. Dahl, and T. J. Lardner

As the title explains, this book shows very basics of the solid mechanics. The book has a good coverage of the concepts of primary elements of mechanics, the three equations, some environmental effect, and examples of torsion, bending, and buckling. This book elaborately explains/proofs several important equations, whose procedures tend to be skipped in many courses due to time limitation. Various case studies/problems accompanied with suitable figures have always helped me to get better senses. It is also easy to find what I am looking for in the book with neatly sorted tables and index. And most importantly, I like this book since the book discusses engineering applications and the limitations of these models.

The materials given in ES240 exceed the range that this book can cover, but this book still is a good resource to go back to when I forget the basics since my sophomore year when I used as our textbook for the materials and structures.

Zhigang Suo's picture

Solid Mechanics Homework 26-30

26. Stress-strain relations under the plane strain conditions
27. Getting weak: derive weak statements from differential equations
28. Potential energy and Rayleigh -Ritz method
29. Constant strain triangle
30. Gaussian quadrature

Return to the outline of the course.

Adrian Podpirka's picture

Textbook Recommendation

So besides using Timoshenko (which is basically the bible of solid mechanics), I have been using Slaughter's The Linearized Theory of Elasticity which I came across in the Gordon McKay Library.

Unlike some of the other textbooks, there is a big focus put on the theory and the idea behind the examples while still having many worked out problems. The first few chapters give a big refresher course on mathematics and lay the groundwork for what is to be taught later on.

I came across this book in particular for the in depth coverage of Airy Stress Functions.

The book is broken into 11 chapters:

Review of Mechanics of Materials
Mathematical Preliminaries
Kinematics
Forces and Stress
Constitutive Equations
Linearized Elasticity Problems
2D Problems
Torsion of Noncircular Cylinders
3D Problems
Variational Methods
Complex Variable Methods

Recommend books

If you prefer to learn tensors in solid mechanics, Nye's book is recommended.
The author covers most of the physical properties in various crystal structures. Some handy tables are included in the book. However, he uses ONLY tensors to derive the properties. If you prefer to write down equations one by one, this would not be a suitable book to start.
Timoshenko's book is also recommended too. As a beginner, this book explains not only the problem, also the meaning behind it. It clearly describes the fundamental questions.
Some books

Zhigang Suo's picture

Solid Mechanics Homework 21-25

21. A fiber in an infinite matrix
22. Anti-plane shear
23. Saint-Venant's principle for orthotropic materials
24. Plane problems with no length scales
25. More scaling relations: a half space filled with a power-law material

Return to the outline of the course.

Megan McCain's picture

Theory of Elasticity by Timoshenko and Goodier

Although I know it is not very original, I am recommending Timoshenko's Theory of Elasticity textbook. I find this book useful because it solves many classical solid mechanics problems without assuming the reader has a strong background in the subject (like me). When I am having difficulty with a homework problem, I turn to the index and it usually directs me to a section of the book directly related to the problem, or sometimes even the solution itself. Many parts of the book complement the course, such as the chapters "Plane Stress and Plane Strain" and "Analysis of Stress and Strain in 3 Dimensions."

The book starts with basic definitions and derivations of stress and strain, then applies these equations to solve problems in different coordinate systems. It also includes chapters on more specific topics, like torsion and thermal stress.

Nanshu Lu's picture

Office Hour Change for Oct. 19

Office hour for tomorrow (Oct. 19 Thursday) will be rescheduled as 4:00pm to 4:30pm.

Sorry about this.

Textbook Recommendation

It's a bit hard to recommend a text, when I have yet to find one that I really love. Currently I am working from Advanced Strength and Applied Elasticity by A.C. Ugural & S.K. Fenster. It contains all of the relevant information, though I find the explanations of the concepts a bit slim. So far is has covered all of topics we covered in class. The first four chapters seem the most relevent. These are titled Analysis of Stress; Strain and Stress-Strain Relations; Two-Dimensional Problems in Elasticity; and Failure Criteria. The rest of the text deals with more specific topics (torsion, bending, plastic behavior, etc.).

Here is a link to the Amazon page, where the book gets mediocore reviews.

Carbon Nanotube Lecture on Nov 1st at MIT

Dr. John Hart from MIT is giving a carbon nanotube (CNT) tutorial at the International Symposoum on Nanomanufacturing (ISNM) at MIT on November 1st, Wednesday. Please see the following if you are interested.

 

Carbon Nanotubes: Fundamentals, synthesis, and applications

Dr. John Hart, MIT
November 1st
9.00 am - 12.30pm (with 1 break)

http://www.isnm2006.org/Professional_courses.html

Zhigang Suo's picture

Solid Mechanics Homework 16-20

  • 16. Recommend a textbook that you think will help students in this course.  See recommendations from students who took this course before.
  • 17. Disclination (the cut-and-weld problem)
  • 18. Design a rotating disk to avert plastic deformation
  • 19. A half space of an elastic material subject to a periodic traction on the surface
  • 20. Orthotropy rescaling

Return to the outline of the course.

Madhav Mani's picture

Madhav Mani

Hey, people often call me Mads which circumvents the ordeal of pronouncing my "real" name correctly which can be tricky. I'm a first year PhD student in applied mathematics. I am currently trying to balance doing courses and research with Michael Brenner, L. Mahadevan and Howard Stone.
My undergraduate and first masters are from Cambridge University, England, during which I studied Pure maths, Applied maths, statistics, mechanics (primarily fluid and some solid) and theoretical pysics.
My interests are primarily in mechanics (fluid, solid and bio). Apart from fluid mechanics I find problems in elasticity and viscoelasticty theory very curious and interesting (currently I am looking at friction in elastomers). I also like looking at biological systems where "structure reveals function". Even though I am primarily a theorist I really enjoy conducting table-top, so called cheap experiments, and talking to experimentalists in any area.

Namiko Yamamoto for ES240 Problem6

I am a first year PhD student in Aeronautics and Astronautics department at MIT. I also have obtained B.S. and M.S. from the same department. I have taken one Solid Mechanics (graduate level) course at MIT, but since it did not cover waves/vibration or nonlinear plate theory, I look forward to these new topics later in the course very much. My most research work has been done at Technology Laboratory for Advanced Materials and Composites at MIT. My M.S. thesis topic was on micro solid oxide fuel cell. The goal was to design and fabricate thin film tri-layer fuel cell structure that is thermomechanically stable at high operation temperature. We started with mechanical testing to acquire properties, and designed membranes with von Karman plate theory. My PhD topic is nano-engineered composites with carbon nanotubes (CNTs). Solid mechanics is very directly related to these structural tasks including stiffness testing. Generally, having better sense of mechanics behind and having many analysis tools will be greatly helpful. So far I have been having much fun coming to Harvard, taking a little break from MIT (I have been there more than enough, although I still love it there). I hope to learn as much as possible from this course.

Hi :)

Hi everyone, I am Roxanne, a G-2 student in applied physics.  My major was chemical engineering when I was an undergraduate student in Taiwan.  I had no background on mechanics then.  When I was a G-1, I took AP 293 (Deformation of Solids).  This course gave me some ideas on the plastic flow, elastic properties, and dislocations of materials. Math, like partial differential equation and tensors are pretty challenging to me…always.

 

Currently, I am working with Frans, and my research focus is on studying the creep phenomena in metals.

http://deas.harvard.edu/matsci/

Xuanhe Zhao's picture

Xuanhe Zhao

My name is Xuanhe Zhao, and I'm a first year student in DEAS. Before joining Harvard, I got my Master Degree in Materials Engineering from University of British Columbia, Canand. I have took one course on Computational Mechanics, and read a couple of books on theory of elasticity.

 The major goal for me taking ES 240 is to learn how to understand and solve engineering problems, both familiar and unfamiliar, in a intuitive way. In addition, I will further consolidate my background in solid mechanics.

Megan McCain's picture

Megan McCain

I am a first year grad student in bioengineering working in Dr. Parker's Disesase Biophysics Group (http://www.deas.harvard.edu/diseasebiophysics/). I attended Washington University in St. Louis for undergrad, where I double majored in biomedical engineering and biology and minored in chemistry. The only courses I have taken related to solid mechanics are Biomechanics and Transport Phenomena, both of which covered basic mechanics. As an undergrad, I worked in a research lab that focused on cardiac electrophysiology. The lab I am in now is interested in how the mechanical and electrical behaviors of cardiac cells are related, so I need to gain a stronger background in mechanics to match my background in electrophysiology. I hope that this class will help me develop an intuition about the mechanical behavior of objects, which I can apply to the mechanics of cellular events.

Pages

Subscribe to RSS - ES 240

Recent comments

More comments

Syndicate

Subscribe to Syndicate