ES 240

Nanshu Lu's picture

ES 240 (Fall 2007) Homework 26-28

This problem set is due Monday, Nov.26, 2007.

Nanshu Lu's picture

ES 240 (Fall 2007) Computer Assignment

This computer assignment is due Friday, Nov. 16, 2007

Nanshu Lu's picture

ABAQUS Tutorial for ES 240

Please download and read the following materials.

1-1 ABAQUS tutorial for ES 240.pdf

1-2 Learning ABAQUS.pdf    

1-3 CAE Example.pdf


Nanshu Lu's picture

ES 240 (Fall 2007) Lecture Notes - Principle of virtual work and FEM

ES 240 notes for Principle of virtual work and FEM. Please see attached.

Cai Shengqiang's picture

A E Love -Treatise on the Mathematical Theory of Elasticity

I recommend this classic book to persons, who want to learn something more about elasticity that cannot be found in traditional books. It's a pretty valuable and inspiring book in elasticity today, although it was written by Love more than 100 years ago. It included many  impressive topics such as equilibirum of anistropic elastic solid bodies, the equilibrium of a elastic sphere, plates and shells. As far as I know, this book is frequently quoted in recent artilces. However, it will be very tough to read this book, even though you have some basic knowledge about elasticity.  I have only scanned some chapters.  Everyone should have a try.

Stress and Strain: Basic Concepts of Continuum Mechanics for Geologists

This book begins by describing real life examples of mechanical states of different materials.  The book next discusses stress.  This discussion includes force, mohr circles, tensor components of stress, and stress fields.  Next strain is discussed.  This ranges from measuring deformation to tensor components of infinite and finite strain.  The book concludes by outlining different material behaviors.  These include Hookean behavior and Newtonian behavior.  This last section also discusses energy consumed in deformation.

 This book presents material in the same sequence as it is discussed in class, but with more attention to details.  This helps to fill in the gaps for things that students might miss during the lectures.

Yuhang Hu's picture

HW 15

Title: Theory of Plates and Shells

Author:  Stephen P. Tomoshenko and S. Woinowsky-Krieger


Chapter 1: Bending of long rectangular plates to a cylindrical surface .

Chapter 2: Pure bending of plates.

Chapter 3: Symmetrical bending of circular plates

Chapter 4: Small deflections of laterally loaded plates

Chapter 5: Simply supported rectangular plates

Chapter 6: Rectangular plates with various edge conditions

Chapter 7: Continuous rectangular plates

Chapter 8: Plates on elastic foundation

Chapter 9: Plates of various shapes

Chapter 10: Special and approximate methods in theory of plates

Nanshu Lu's picture

ES 240 (Fall 2007) Homework 22-25

This problem set is due on Nov.2, 2007.

15. Recommend a textbook that you think will help students in this course

Theory of Elasticity by Landau and Lifshitz.

1 fundamental equations
2 the equilibrium of rods and plates
3 elastic waves
4 dislocations
5 thermal conduction and viscosity in solids
6 mechanics of liquid crystals

Sun Min Jung's picture

ES 240 - Sun Min Jung Q15

If I were to recommend one textbook that will help students in this course it would obviously be the "Theory of Elasticity" by Timoshenko and Goodier. But you could have found that out by simply looking at the course syllabus, so I will also recommend the following books that are helpful in other areas of the course: "Mathematical Phyiscs" by Kusse and Westwig, "Mechanics of Materials" by Beer and Johnson, and "Advanced Engineering Mathematics" by Greenberg.

Mechanics of Materials by F. Beer, E. R. Johnston, and J. T. DeWolf

Mechanics of Materials was used as the textbook in my undergraduate solid mechanics course. It is an introductory book which gives a great overview of the basic concepts needed for solid mechanics . The material is presented in a way that makes it easy to understand with many practical examples. I learn material best when I am shown how theories are applied and this book does that very well. It also dives into detail of some practical applications of fundamental solid mechanics. The book explores axial loading, torsion, pure bending, analysis of beams, shearing stresses in beams, transformations, principal stresses, deflection of beams, columns, and energy methonds.

Crystallography and Crystal Defects by A. Kelly and G. W. Groves

This book may not seem like it would help in this course very much, but I used it for the problem set that we had on the compliance and stiffness matrices.  The portions of the text that pertain to this course are Chapters 4 and 5.  Chapter 4 is about tensors.  This chapter also includes a review of suffix notation with dummy indicies.  Chapter 5 is about stress, strain and elasticity.  I used this chapter for better understanding of the tensor notation and to see how to work with the stiffness and compliance matrices.  The rest of the text is about crystal structures, defects in crystals, and transformations of crystals.  But Chapters 4 and 5 have helped me.

Deformable Bodies and Their Material Behavior by HW Haslach and RW Armstrong

Deformable Bodies and Their Material Behavior by HW Haslach and RW Armstrong is a great reference book for solid mechanics. This text discusses a wide variety of materials, the relationships between applied stresses, displacements and material properties, the mathematical approximations to predict mechanical behaviors, and the practical uses for the theory. The text helps to understand how the theory can be applied to practical problems. The text has many worked examples to common problems.

Recommended book to accompany ES 240

I recommend the book 

“The Linearized Theory of Elasticity” by William S.


Here is a review of it from Amazon:


Chapter Outline:

1 Review of Mechanics of Materials

HW 15

I find the book , An Introduction to the mechanics of solids , is very helpful to me.

 It is written by Stephen H. Crandall and Thomas Lardner .

 This book offers detailed discussion on modeling, placing emphasis on where the equations come from and why some variable should be zero or can be ignored. Thus I can learn not only the derivation but also the mechanical insight.

Foundations of Solid Mechanics by Y. C. Fung

Here are the chapter names:

1) Prototypes of the theory of elasticity and viscoelasticity

2) Tensor analysis

3) Stress tensor

4) Analysis of strain

5) Conservation Laws

6) Elastic and plastic behavior of materials

7) Linear elasticity

8) Solutions of problems in elasticity by potentials

9) Two-dimensional problems in elasticity

10) Variational Calculus, energy theorems, saint-venant's principle

11) Hamilton's principle, wave propagation, applications of generalized coordinates 

12) Elasticity and thermodynamics

13) Irreversible thermodynamics and viscoelasticity

14) Thermoelasticity

Nanshu Lu's picture

ES 240 (Fall 2007) Lecture Notes - Plane Elasticity - Part 2

Part 2 of Plane Elasticity notes. Please see attached.

Nanshu Lu's picture

ES 240 (Fall 2007) Homework 19-21

This Problem Set is due on Friday, Oct. 26. 

Free vector calc and mechanics text!


John H. Heinbockel


Very clear treatment on tensors and vector calculus, also free online!

Stress and Deformation: A handbook on tensors in geology by Gerard Oertel

Despite the title, the book covers very little specifically on geology.  It works through stress, strain, and other tensor quantities, but assumes you know little about the math.  Fully worked problems make up the bulk of the book following a few introcutory chapters.  I've found it a nice review of the math, but haven't fully explored the solution sections.  I got the book from Cabot Science Library here at Harvard. I wouldn't recommend buying it on amazon it's not worth the $72, but it is a nice addition to Timoshenko's theory of elasticity.

Mechanics of Materials by R.C. Hibbeler

  • reviews 
  • Content (by chapter):
    • Stress
    • Strain
    • Mechanical Properties of Materials
    • Axial Load
    • Torsion
    • Bending
    • Transverse Shear
    • Combined  Loadings
    • Stress Transformation
    • Strain Transformation
    • Design of Beams and Shafts
    • Deflections of Beams and Shafts
    • Buckling of Columns
    • Energy Methods

Syndicate content