User login

Navigation

You are here

A phase-field mixture theory of tumor growth

danialfaghihi's picture

Our paper on the phase-field mixture theory of tumor growth is published in JMPS. The continuum model simulates significant mechano-chemo-biological features of avascular tumor growth in the various microenvironment, i.e., nutrient concentration and mechanical stress.

Faghihi, Feng, Lima, Oden, and Yankeelov (2020). A Coupled Mass Transport and Deformation Theory of Multi-constituent Tumor Growth. Journal of the Mechanics and Physics of Solids, 103936.

https://www.sciencedirect.com/science/article/pii/S0022509620301721 

 

Abstract:

We develop a general class of thermodynamically consistent, continuum models based on mixture theory with phase effects that describe the behavior of a mass of multiple inter- acting constituents. The constituents consist of solid species undergoing large elastic de- formations and incompressible viscous fluids. The fundamental building blocks framing the mixture theories consist of the mass balance law of diffusing species and microscopic (cellular scale) and macroscopic (tissue scale) force balances, as well as energy balance and the entropy production inequality derived from the first and second laws of thermodynamics. A general phase-field framework is developed by closing the system through postulating constitutive equations (i.e., specific forms of free energy and rate of dissipation potentials) to depict the growth of tumors in a microenvironment. A notable feature of this theory is that it contains a unified continuum mechanics framework for addressing the interactions of multiple species evolving in both space and time and involved in biological growth of soft tissues (e.g., tumor cells and nutrients). The formulation also accounts for the regulating roles of the mechanical deformation on the growth of tumors, through a physically and mathematically consistent coupled diffusion and deformation framework. A new algorithm for numerical approximation of the proposed model using mixed finite elements is presented. The results of numerical experiments indicate that the proposed theory captures critical features of avascular tumor growth in the various microenvironment of living tissue, in agreement with the experimental studies in the literature.

Subscribe to Comments for "A phase-field mixture theory of tumor growth "

Recent comments

More comments

Syndicate

Subscribe to Syndicate