User login

Navigation

You are here

Mohammad Refatul Islam's blog

Mohammad Refatul Islam's picture

Random fiber networks with inclusions: The mechanism of reinforcement

The mechanical behavior of athermal random fiber networks embedding particulate inclusions is studied in this work. Composites in which the filler size is comparable with the mean segment length of the network are considered. Inclusions are randomly distributed in the network at various volume fractions, and cases in which fibers are rigidly bonded to fillers and in which no such bonding is imposed are studied separately.

Mohammad Refatul Islam's picture

Parameters controlling the strength of stochastic fibrous materials

Many materials of everyday use are fibrous and their strength is important in most applications. In this work we study the dependence of the strength of random fiber networks on structural parameters such as the network density, cross-link density, fiber tortuosity, and the strength of the inter-fiber cross-links. Athermal networks of cellular and fibrous type are considered. We conclude that the network strength scales linearly with the cross-link number density and with the cross-link strength for a broad range of network parameters, and for both types of networks considered.

Mohammad Refatul Islam's picture

Stochastic continuum model for mycelium-based bio-foam

Mycelium, the root structure of fungi, grows naturally as a biodegradable filamentous material. This unique material has highly heterogeneous microstructure with pronounced spatial variability in density and exhibits strongly non-linear mechanical behavior. In this work we explore the material response in compression, under cyclic deformation, and develop an experimentally-validated multiscale model for its mechanical behavior. The deformation localizes in stochastically distributed sub-domains which eventually percolate to form macroscopic bands of high density material.

Mohammad Refatul Islam's picture

Mechanical behavior of mycelium-based particulate composites

We study the mechanical behavior of mycelium composites reinforced with biodegradable agro-waste particles. In the composite, the mycelium acts as a supportive matrix which binds reinforcing particles within its filamentous network structure. The compressive behavior of mycelium composites is investigated using an integrated experimental and computational approach.

Mohammad Refatul Islam's picture

Mechanics of Mushroom as a material

We recently characterized a unique material developed from root structure (Mycelium) of mushroom. Mycelium has a filamentous network structure with mechanics largely controlled by filament elasticity and branching, and network density. We report the morphological and mechanical characterization of mycelium. The monotonic mechanical behavior of the mycelium is non-linear both in tension and compression.

Mohammad Refatul Islam's picture

Poisson Contraction and Fiber Kinematics in Tissue: Insight from Collagen Network Simulations

Connective tissue mechanics is highly non-linear, exhibits a strong Poisson effect and is associated with significant collagen fiber re-arrangement. Although the general features of the stress-strain behavior in tension and compression and under uniaxial, biaxial and shear loading have been discussed extensively, especially from the macroscopic perspective, the Poisson effect and the kinematics of filaments have received less attention. In general, the relationship between the microscopic fiber network mechanics and the macroscopic experimental observations remains poorly defined.

Mohammad Refatul Islam's picture

Microstructure modeling of random composites with cylindrical inclusions having high volume fraction and broad aspect ratio distribution

We proposed a computational methodology for generating microstructure models of random composites with cylindrical or sphero-cylindrical inclusions having high volume fraction and broad aspect ratio distribution. The proposed methodology couples the random sequential adsorption (RSA) algorithm and dynamic finite element (FE) simulations. It uses RSA to generate sparse inclusion assemblies of low volume fraction and subsequently utilizes dynamic FE simulation for inclusion packing to achieve high volume fractions.

Mohammad Refatul Islam's picture

Simulation-based numerical optimization of arc welding process for reduced distortion in welded structures

This paper presents an effective numerical approach for welding process
parameter optimization to minimize weld-induced distortion in
structures. A numerical optimization framework based on coupled Genetic
Algorithm (GA) and Finite Element Analysis (FEA) is developed and
implemented for a low and a high fidelity model. Classical weakly
coupled thermo-mechanical analysis with thermo-elasto-plastic
assumptions is carried out for distortion prediction of numerical
models. The search for optimum process parameters is executed by direct
integration of numerical models and GA-based optimization technique. The
developed framework automatically inserts the process parameters into
the simulation models, executes the FE-based welding simulations and

Subscribe to RSS - Mohammad Refatul Islam's blog

Recent comments

More comments

Syndicate

Subscribe to Syndicate