Transversely isotropic material

The direction of fibers at a point 'X' in the undeformed co-ordinate system is a_o . Strain energy density, ψ , is expressed in terms of right Cauchy-Green tensor, C, and also a_o . The following is the function

$$\psi = \psi \bigg(C, a_o \otimes a_o \bigg)$$

I have the following doubts.

- 1. a_o is a vector, but, this is expressed as a second order tensor. Why? Is it to make the function, ψ , uniform in terms of its arguments? When do we convert a first order tensor into a second order (or above) tensors?
- 2. ψ is expressed in terms of five invariants. Among five, three are regular invariants as we see in case of isotropic materials. Rest of the two are (I_4 and I_5) in terms of C and C0. What is the basis for these two (why only two?) invariants and how do we get the expressions for I_4 and I_5 in variants.