EM 388F: Fracture Mechanics

HW#5 (due Wednesday, April 9, 2008)

- 24. The resistance curve of a brittle material fits the expression $K_R(\Delta a) = K_0 + \beta \Delta a$, where K_0 and β are material parameters. Consider the effects of small cracks in a body designed to carry a fixed stress level σ . Assume the stress intensity factor is given by $K = \sigma \sqrt{\pi a}$.
 - (a) Obtain the critical crack size a_c for crack initiation.
 - (b) Determine the relationship between K_0 and β to ensure a crack of the critical size is stable.
 - (c) Discuss the implications of increasing K_0 or β .
 - (d) Discuss the implications of increasing the design stress σ .
- 25. The resistance curve of a brittle material fits the expression

$$K_R(\Delta a) = K_{SS} - (K_{SS} - K_0) \exp(-\Delta a / L_{SS})$$

Regard K_0 , K_{SS} , and L_{SS} as material parameters. The material has crack-like flaws of length $2a_0$. When the material is under a stress σ , the crack grow stably to length 2a and stop. Assume that the stress intensity factor is given by $K = \sigma \sqrt{\pi a}$.

- (a) Sketch the R-curve and the loading curve. Explain the meanings of the material parameters.
- (b) Describe a procedure to determine the maximum stress σ^* that the material can carry without breaking and the stable crack extension before the material breaks under the maximum stress.
- (c) A material has $K_0 = 1$ MPa-m^{1/2}, $K_{SS} = 10$ MPa-m^{1/2}, and $L_{SS} = 10$ µm. Plot the strength as a function of the flaw size in the range $a_0 = 5$ -50 µm. Make a similar plot for a material having $L_{SS} = 20$ µm. Discuss the effect of L_{SS} .
- (d) Plot your results in a dimensionless form. For example, plot $\sigma * \sqrt{L_{SS}} / K_0$ as a function of a_0 / L_{SS} for several values of K_{SS} / K_0 . Discuss the implications of increasing the initial flaw size or the ratio K_{SS} / K_0 .
- 26. A fairly tough steel has a plane strain toughness $K_C = 100$ MPa-m^{1/2} and a resistance curve given by $K_R = K_C [4 3 \exp(-\Delta a/L)]$, where L = 3 mm. A pressure vessel has wall thickness t = 5 cm. An edge crack of initial length 1 cm exists in the wall. Model the problem as an edge-cracked plate under an applied stress σ . From a handbook, we found an expression for the stress intensity factor for an edge crack of length a: $K = \sigma \sqrt{\pi a} F(a/t)$, where

$$F(x) = 0.265(1-x)^4 + (0.857 + 0.265x)(1-x)^{-3/2}.$$

- (a) Determine the stress at which the crack starts to advance.
- (b) Determine the stress at which the crack becomes unstable.

- 27. An aluminum has a fracture toughness $K_c = 30$ MPa-m^{1/2}. Under a cyclic load, a crack in the aluminum extends per cycle by $\frac{da}{dN} = \beta \left(\frac{\Delta K}{K_c}\right)^4$, where $\beta = 1$ µm/cycle. A large plate of the aluminum is subjected to a cyclic tensile stress varying between 0 and 200 MPa. A surface crack has initial depth $a_0 = 500$ µm.
 - (a) How many cycles does it take for the crack to double its depth?
 - (b) How many cycles does it take for the aluminum plate to undergo fast fracture?
 - (c) The threshold stress intensity factor has been estimated to be $K_{th} = 3$ MPa-m^{1/2}. Determine the critical stress range, below which the crack will not grow.
- 28. An aluminum alloy for an airframe component was tested in the laboratory under an applied stress that varies sinusoidally with time about a mean stress of zero. The alloy failed under a stress amplitude of 140 MPa after 10^5 cycles and under a stress amplitude of 100 MPa after 10^7 cycles. Assume that the number of cycles to failure, N_f , relates to the stress amplitude by an empirical formula (Basquin's law): $\sigma_a N_f^m = C$.
 - (a) Use the test results to determine the constants m and C.
 - (b) An aircraft using the airframe component has encountered an estimated 4×10^8 cycles at a stress amplitude of 75 MPa. It is desired to extend the airframe life by another 4×10^8 cycles by reducing the stress amplitude. Find the reduction in stress amplitude necessary to achieve the desired lifetime.