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Abstract

A formal hierarchy of exact evolution equations are derived for physically relevant space-time
averages of state functions of microscopic dislocation dynamics. While such hierarchies are
undoubtedly of some value, a primary goal here is to expose the intractable complexity of such
systems of nonlinear partial differential equations that, furthermore, remain ‘non-closed,’ and
therefore subject to phenomenological assumptions to be useful. It is instead suggested that such
hierarchies be terminated at the earliest stage possible and effort be expended to derive closure
relations for the ‘non-closed’ terms that arise from the formal averaging by taking into account
the full-stress-coupled microscopic dislocation dynamics (as done in [CPZ+20]), a matter on
which these formal hierarchies, whether of kinetic theory type or as pursued here, are silent.

1 Introduction

This paper is concerned with the formal derivation of governing field equations of increasingly
detailed space-time averaged behavior of microscopic dislocation dynamics, and assessing the value
of such systems. The microscopic dislocation dynamics is posed as a system of pde, capable of
representing the dynamics of a collection of possibly tangled smooth curves representing dislocation
core cylinders, each core cylinder movable by a combination of glide and climb due to the action of
a vectorial velocity field. The velocity field is determined, following well-accepted notions, purely
from the dislocation density field (with the possibly tangled web of core cylinders viewed simply
as appropriate smooth localizations in space of the dislocation density field), and the (nonlinear
crystal elastic) stress field in the body; even when linear elasticity is used, the point-wise Burgers
vector direction and line direction (information built into the dislocation density field) are adequate
to describe the motion of edge segments, and the motion of screws are restricted to within a
geometrically defined set of planes. In any case a resolution into slip system dislocation densities
is not essential (cf. [ZCA13]). This pde system is adequate for representing the plasticity of the
constituent material when atomic length scales are resolved - we refer to this system as Field
Dislocation Mechanics (FDM). We are interested in obtaining the implications of this model when
the resolved length (and time) scales are much coarser, i.e. we are interested in obtaining some
information on the nature of the governing evolution equations for increasingly detailed descriptions
of averaged behavior of this microscopic system, appropriate for coarser-length and time scales.
We emphasize that the derived averaged equations represent exact, but non-closed, statements
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of evolution of the defined average variables, without any compromise on the inherent kinematic
constraints of the microscopic system (e.g. the connectedness of the dislocation lines represented
by the solenoidal property of the microscopic dislocation density field).

The above line of inquiry was initiated in [AR06, AC12]; as will be shown in this paper, the exact
equations of evolution become exceedingly complex and cumbersome and it was suggested in [AR06]
that closure assumptions be made at a relatively lower level to maintain tractability (while allowing
for the inclusion of all that is known in the physics-based phenomenological modeling of plastic
deformation and strength, e.g. [KAA75]) and refining the description as required for greater fidelity.
We will refer to this approach as the MFDM (Mesoscale Field Dislocation Mechanics) approach to
plasticity.

In the Continuum Dislocation Dynamics (CDD) framework of Hochrainer and collaborators [HZG07,
Hoc16, MZ18], models are developed based on a kinetic theory-like framework, starting from the
assumption that a fundamental statement for the evolution of a number density function on the
space of dislocation segment positions and orientations is available at the microscopic level. This
microscopic governing equation is non-closed even if one knows completely the rules of physical
evolution of individual dislocations segments of connected lines; one would need to study the be-
havior of an ensemble of dislocation dynamics evolutions to define, and then also only in principle,
the evolution of such a number density function (cf. [HZG07, Sec 3.1, 5]) - this detail is built
into the state-space velocity function introduced in [HZG07], which cannot be simply defined by
a well-accepted statement like the Peach-Köhler force for a segment of a real-space description of
a dislocation line. Furthermore, Equations (7) and (11) of [HZG07], the fundamental statement
of evolution governing the number density function (a ‘collective’ quantity), are postulated with-
out fundamental justification. This is in contrast to FDM where the fundamental justification for
the statement of microscopic dynamics is the integral statement of conservation of Burgers vector,
a physically observed fact (which does not imply a conservation of the ‘number’ of dislocations,
whether loops or otherwise, as stated in [HZG07, Sec. 4], and as demonstrated in exercises related
to annihilation and nucleation [GAM15]); then, the equations of MFDM follow strictly from FDM
on averaging, without any further assumptions. Returning to CDD, on making various assumptions
for tractability, the theory produces (non-closed) statements of evolution for the averaged disloca-
tion density (akin to the mesoscale Nye tensor field), the total dislocation density (similar to an
appropriate sum of the averaged Nye tensor density) and, these densities being defined as physical
scalars, and an associated curvature density field. Closure assumptions are made to cut off infinite
hierarchies, which is standard for averaging based on nonlinear ‘microscopic equations’, and fur-
ther closure assumptions for constitutive statements are made based on standard thermodynamic
arguments [Hoc16].

The model in [XEA15] belongs to the same mathematical class as MFDM but with more compli-
cated constitutive structure related to multiple-slip behavior [DAS16]. It assumes geometrically
linear kinematics for the total deformation coupled to a system of stress-dependent, nonlinear
transport equations for vector-valued slip-system dislocation densities. These slip system den-
sity transport equations involve complicated, phenomenological constitutive assumptions related
to cross-slip, and the authors of [XEA15] promote the point of view that dislocation patterning
is related to the modeling of slip system dislocation densities and cross-slip. An attempt to un-
derstand emergence of microstructure in 1-d setting was made in [DAS16], and in 3-d and finite
deformation setting was made in [AA20a]. They concluded that in all likelihood, such complexity
is not essential for the emergence of dislocation microstructure in this family of models.

Despite postulating the microscopic dynamics on which their entire approach is based, making
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phenomenological closure assumptions of their own, and making ad-hoc choices of cutting off the
infinite hierarchy of their equations, the CDD authors have criticized the MFDM approach as
inadequate for describing the plasticity of metals [HZG07, Hoc16, MZ18]. The authors of [XEA15]
have criticized MFDM for using a phenomenological approach and for the lack of resolution into slip
systems in order to model cross slip. One goal of this paper is to show that the criticisms leveled
against the MFDM approach in [SHZG11, XEA15, MZ18] are unfounded, at least in comparison
to the standards of these works.

The MFDM approach starts from a well-accepted fundamental microscopic dynamical statement
(unlike CDD), and produces an exact hierarchy of equations for any desired level of detail in
the coarse description as an implication of this fundamental microscopic dynamics. Extending the
work in [AC12], this paper explicitly shows that while the MFDM approach can easily accommodate
descriptors like slip system dislocation densities and define precise hierarchies of evolution equations
for them, such an enterprise comes at a significant cost in complexity and tractability of the
resulting model, and shows the exact nature of phenomenology and gross approximation that
would necessarily be inherent in any proposed formalism for coarse-grained dislocation dynamics
(e.g., [SHZG11, XEA15]) that does not consider head-on the question of averaging the stress-coupled
interaction-related dynamics of dislocations.

This paper is organized as follows. In Section 2, we apply the averaging procedure utilized in [Bab97]
to generate an infinite hierarchy of nonlinear coarse equations corresponding to a fine dynamics,
which (essentially) cannot be solved. In Section 3, we apply the averaging procedure to derive the
coarse evolution of averaged total dislocation density and demonstrate, using a simple example,
that the averaged dislocation density of an expanding circular loop increases. In Section 3.2, we
present a refined description of the variables with respect to individual slip systems, reflective
of a crystal plasticity description and present the coarse evolution of these variables, namely the
averaged dislocation density tensor and the averaged total dislocation density. In order to do so,
we define a characteristic function, which indicates whether any given position has a dislocation of
a particular slip system. We show how the coarse evolution of these variables are very cumbersome
and hence, why it is reasonable to close the infinite hierarchy of non-closed system of equations at
a low level. It is also important to generate lower level closure assumptions that account for the
stress coupled dynamics of dislocations. Such work has been demonstrated in [CPZ+20].

2 Hierarchy of averaged equations for nonlinear microscopic equa-
tions: the basic idea

In this section, we will utilize an averaging procedure used in the literature for multiphase flows
(see [Bab97]). For a microscopic field f given as a function of space and time, the mesoscopic
space-time-averaged field f̄ [AR06, AC12] is given as

f̄(x, t) =
1∫

I(t)

∫
Ω(x)w(x− x′, t− t′)dx′dt′

∫
=

∫
B
w(x− x′, t− t′)f(x′, t′)dx′dt′, (2.1)

where B is the body and I a sufficiently large interval of time. In the above, Ω(x) is a bounded
region within the body around the point x with linear dimension of the order of the spatial resolution
of the macroscopic model we seek, and I(t) is a bounded interval in I containing t. The weighting
function w is non-dimensional, assumed to be smooth in the variables x, x′, t, t′ and, for fixed

3



x and t, have support (i.e. to be non-zero) only in Ω(x) × I(t) when viewed as a function of
(x′, t′).

The one-dimensional analogue of (2.1) is

∂t′f = F (f, ∂x′f), (2.2)

where x′ is the spatial coordinate and t′ is time and f is a function of x′ and t′. We call the system
given by equation (2.2) as the fine scale system.

We aim to understand the macroscopic evolution of the fine dynamics (2.2) in terms of averaged
(coarse) variables. To do so, the averaging operator (2.1) is applied to both sides of (2.2), which
results in the following:

∂

∂t
f(x, t) = F (f, ∂x′f)(x, t). (2.3)

We denote A0 := f and A01 := ∂tA0 = F . The fluctuation of function f is defined as:

Σf (x′, t′, x, t) := f(x′, t′)− f(x, t). (2.4)

The average of the product (p) of two variables f and g is given by

f(p)g ={f̄ + (f − f̄)}(p){ḡ + (g − ḡ)}

=f̄(p)ḡ + f̄(p)(g − ḡ) + (f − f̄)(p)ḡ + (f − f̄)(p)(g − ḡ)

=f(p)g + f̄(p)Σg + ḡ(p)Σf + Σf (p)Σg

=f(p)g + Σf (p)Σg, (2.5)

so that

f(p)g − f̄(p)ḡ = f(p)g − f̄(p)ḡ = Σf (p)Σg.

Here, f and g can be scalar, vector or tensor valued. Some examples of the product (p) are scalar
multiplication, vector inner product, tensor inner product, cross product of a tensor with a vector
etc. For example, if f and g are scalar and (p) is the scalar multiplication operator,

fg = f g + ΣfΣg. (2.6)

Using (2.5), we obtain the average of product of three variables as

f(p)g(p)h =f(p)g(p)h+ Σf (p)Σg(p)h = f(p){g(p)h+ Σg(p)Σh}+ Σf (p)Σg(p)h

=f(p)g(p)h+ f(p)Σg(p)Σh + Σf (p)Σg(p)h. (2.7)

Similarly, for f , g and h scalars and (p) the scalar multiplication operator,

fgh = f g h+ f Σg Σh + Σf Σg h. (2.8)

Equations (2.6), (2.7) and (2.8) show that the averages of products of two or more variables are
not the products of their averages.
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It can be shown using (2.2), (2.3) and (2.4) that

∂ttA0 = ∂tA01 = ∂2F∂1F∂xA0 + ∂2F∂2F∂xxA0 +A011 + Σ(∂2F∂1F )Σ(∂x′f) + Σ(∂2F∂2F )Σ(∂x′x′f),
(2.9)

where A011 := ∂1FF .

Thus, in the coarse evolution of F̄ , new terms (e.g. ∂2F∂1F ) emerge and therefore, it is necessary
to augment (2.9) with coarse evolution equations of the new terms (that appear on the rhs of (2.9)),
namely the following:

∂t
(
∂2F∂1F

)
= G1

∂t
(
∂2F∂2F

)
= G2

∂t

(
Σ(∂2F∂1F )Σ(∂x′f)

)
= G3

∂t

(
Σ(∂2F∂2F )Σ(∂x′x′f)

)
= G4, (2.10)

where Gi (i = 1 to 4) are functionals of the state. In general, these functionals cannot be expressed
as functionals of the independent fields of the averaged model, such relations being referred to as
‘closure’ relations.

The functionals Gi can be generated by applying the averaging operator (2.1) to the fine scale
equations and decomposing the average of product of functions in the fine scale into product of
their averages and their associated fluctuation terms. For example, the coarse evolution of ∂2F∂1F
(which is given by G1 above) is

∂t
(
∂2F∂1F

)
= ∂′t (∂2F∂1F ) = ∂′t (∂2F ) ∂1F + ∂2F∂′t (∂1F )

= H(∂1F ) + (∂2F )M = H∂1F +M∂2F + ΣHΣ∂1F + ΣMΣ∂2F ,

where H = ∂′t (∂2F ) and M = ∂′t (∂1F ). Thus, new terms appear in the coarse evolution of the term
∂2F∂1F , and similarly for the other terms in (2.10). In this manner, we can generate an infinite
hierarchy of nonlinear coarse equations corresponding to the fine dynamics (2.2). Solution of such
an infinite system is not possible.

It is therefore necessary to close the equations at a desired level, which means to use physics based
assumptions for the necessary terms instead of solving their exact evolution equation (for example,
in equation (2.10) above, we might use closure assumptions for the functionals Gi on the rhs).
Morever, even if the system was finite but large and could be solved (in principle), approximating
solutions to nonlinear systems of pde is by no means a trivial task, so that it is definitely better to
shift the focus from generating large formal hierarchies of nonlinear pde to generating controlled,
with respect to accuracy, closure assumptions to maintain tractability.

3 Models of MFDM with varying coarse descriptors

The model of FDM [Ach01, Ach03, Ach04] represents the dynamics of a collection of dislocation
lines at the atomic length scale. The field equations of FDM are as follows:

α̇ = −curl(α× V )
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curlχ = α

divχ = 0

div(gradż) = div(α× V +Lp)

div(C : {gradu− z + χ}) = 0. (3.1)

The tensor α is the dislocation density tensor, V is the dislocation velocity vector, C is the fourth-
order, possibly anisotropic, tensor of linear elastic moduli, u is the total displacement vector, χ is
the incompatible part of the elastic distortion tensor, and u−z is a vector field whose gradient is the
compatible part of the elastic distortion tensor. Upon application of the averaging operator (2.1)
defined in Section 2 to both sides of (3.1), we have the following system of averaged equations

α̇ = −curl(α× V +Lp)

curlχ = α

divχ = 0

div(gradż) = div(α× V +Lp)

div(C : {grad(u− z) + χ}) = 0 (3.2)

[AR06]. The system (3.2) is called Mesoscale Field Dislocation Mechanics. Here, Lp is defined
as

Lp := α× V −α× V , (3.3)

and it represents the strain rate produced by ‘statistically stored dislocations’. It follows from
(2.5) that Lp is the average of the cross product of the fluctuation of α and V ( which means
Lp = Σα × ΣV ). Consider a uniformly expanding square loop. Since α = b ⊗ l̂, where b is the
Burgers vector density per unit area and l̂ is the line direction at each point of the loop and b
remains uniform along the loop, and both l̂ and V change sign going from one side of the square
loop to the opposite side, both α = 0 and V = 0. However, α × V is identical for opposite sides
of the loop and does not cancel out and hence, Lp 6= 0.

3.1 Isotropic MFDM

We consider as descriptors of the system the averaged total dislocation density ρ and the plastic
distortion rate Lp, which are commonly used in the literature (also see [AC12]).

3.1.1 Evolution equation for averaged total dislocation density, ρl.

The total dislocation density is defined as

ρ := α : α. (3.4)

Suppose we have many dislocation segments in a box of volume V . We see that
∫
V ρdv

V =
∑

iαi:αi liAi

V ,
where αi, li and Ai (which is assumed to be |bi|2 up to a constant) are the dislocation density tensor,

line length and cross section area of segment i respectively. We also have that αi = |bi|mi⊗ti
Ai

, where
bi, mi and ti are the Burgers vector, Burgers vector direction and the line direction of segment i.
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Therefore,
∑

iαi:αi liAi

V = 1
V

∑
i
|bi|2
A2

i
liAi = 1

V

∑
i
|bi|2
|bi|4 li|bi|

2= 1
V

∑
i li, which is the averaged dislo-

cation density in the box. Since ρ is the microscopic total dislocation density,
∫
V ρdv

V is ρ averaged
over V , which gives the averaged dislocation density of the box. This acts as a verification that ρ
is indeed the total dislocation density.

The space-time averaged total dislocation density ρ is given by

ρ = α : α+ Σα : Σα. (3.5)

This follows from (2.5) and shows that the average of the total dislocation density contains average
terms as well as averages of fluctuations. We can interpret this using Fig. 1 in which we see that
the averaging box has many loops which are inside the box and there are some loops which are
not entirely contained inside the box. Since the Burgers vector is uniform over a loop, the average
dislocation density (b⊗ l̂) due to the loops which are contained in the box is 0 since the average of
the line direction l̂ over the loop cancels out. The only contribution to the first term on the rhs of
(3.5) is from the loops which are not entirely contained in the averaging box. If our averaging box
has a very large length scale, then most loops will be contained inside the box and as such, α ≈ 0
and the main contribution to the averaged total dislocation density will come from the average of
the fluctuation term given by the second term on the rhs of (3.5). The evolution of such fluctuation
terms, as discussed in Section 2, will be given by other pde, which will themselves be non-closed,
as they will contain other fluctuation terms. This will generate an infinite hierarchy of non-closed
cumbersome pde, as will be shown next.

Figure 1: Dislocation loops in averaging box

The evolution of ρ is given by

ρ̇ =− grad ρ · V − 2 ρ divV + 2 α : (divα⊗ V ) + 2 α : {α gradV } − Σgradρ · ΣV

− 2ΣρΣdivV + 2 α : (Σdivα ⊗ ΣV ) + 2Σα : Σdivα⊗V + 2 α : Σα ΣgradV

+ 2 Σα : Σα gradV . (3.6)

The derivation of (3.6) is given in Appendix A.1. As the averaging length scale becomes large, the
RHS of (3.6) is dominated by the averages of the fluctuation terms.

Example: Circular dislocation loop

The evolution equation for ρ (as derived in Appendix A.1 and given by (A.2)) is

ρ̇ = −gradρ · V − 2ρ(divV ) + 2α : (divα⊗ V ) + 2α : {α gradV }
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Figure 2: Top view of a uniformly expanding loop of radius R and width ∆R.

Application of the averaging operator (2.1) to the above results in the following:

ρ̇ = −gradρ · V − 2ρ(divV ) + 2α : (divα⊗ V ) + 2α : {α gradV }. (3.7)

We aim to understand the evolution of ρ for the case of a circular dislocation loop of inner radius
R, width ∆R (see Fig. 2) and thickness t. The area of cross section of the loop is A = ∆R. t,
which is assumed to be b2, where b is the magnitude of the Burgers vector b. The radial unit
vector is er = cosθex + sinθey, while the tangential unit vector is eθ = −sinθex + cosθey. Let us
assume that its velocity has the same magnitude for all points (r, θ, z) of the loop (where z is the
spatial coordinate along the thickness) and points radially outwards. Hence, the velocity is given
by V = v(r) er, where v(r) = ṽH(r − R) − ṽH(r − (R + ∆R)). Let the averaging domain be a
circular plate of radius L and thickness H, where L� R and H � t.

We have

V =
1

πL2H

∫ θ=2π

θ=0

∫ r=L

r=0

∫ t
2

z=− t
2

v(r)errdrdθdz

=
t

πL2H

∫ θ=2π

θ=0

∫ r=L

r=0
{ṽH(r −R)− ṽH(r − (R+ ∆R))}{cosθex + sinθey}rdrdθ

=
ṽt

πL2H

[ ∫ R+∆R

R
r dr

][( ∫ θ=2π

θ=0
cosθ

)
ex +

(∫ θ=2π

θ=0
sinθ

)
ey

]
=

ṽt

πL2H

[
r2

2

]R+∆R

R

[
{sin2π − sin0}ex + {cos2π − cos0}ey

]
=

ṽt

πL2H
∆R (2R+ ∆R) 0 = 0

(3.8)
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Also,

α =
1

πL2H

∫ θ=2π

θ=0

∫ r=L

r=0

∫ t
2

z=− t
2

b

A
⊗ l̂rdrdθdz =

t

πL2Hb2

∫ θ=2π

θ=0

∫ r=L

r=0
b⊗ eθrdrdθ

=
t

πL2Hb2

∫ θ=2π

θ=0

∫ r=L

r=0
b⊗ {−sinθex + cosθey}rdrdθ

=
t

πL2Hb2
b⊗

[ ∫ R+∆R

R
r dr

][( ∫ θ=2π

θ=0
−sinθ

)
ex +

(∫ θ=2π

θ=0
cosθ

)
ey

]
=

t

πL2Hb2
b⊗

[
r2

2

]R+∆R

R

[
{cos2π − cos0}ex − {sin2π − sin0}ey

]
=

t

πL2Hb2
b⊗ {∆R.(2R+ ∆R).0} =

2R+ ∆R

πL2H
b⊗ 0 = 0.

(3.9)

Moreover,

gradV =
∂Vr
∂r
er ⊗ er +

Vr
r
eθ ⊗ eθ

=⇒ divV = gradV : I =
∂v(r)

∂r
+
v(r)

r

= ṽδ(r −R)− ṽ δ(r − (R+ ∆R)) +
ṽ [H(r −R)−H(r − (R+ ∆r))]

r

Hence,

div(V ) =
1

πL2

∫ θ=2π

θ=0

∫ r=L

r=0

∫ t
2

z=− t
2

grad(V )rdrdθdz

=
ṽt

πL2H

∫ θ=2π

θ=0

∫ r=L

r=0

{
ṽ δ(r −R)− ṽ.δ(r − (R+ ∆R))

+
ṽ [H(r −R)−H(r − (R+ ∆r))]

r

}
rdrdθ

=
ṽt

πL2H
[R− (R+ ∆R)].(2π) +

ṽt

πL2H

{∫ R+∆R

R
dr
}
.(2π)

= − ṽt

πL2H
.∆R.(2π) +

ṽt

πL2H
.∆R.(2π) = 0

(3.10)

We also note that divV = divV = div0 = 0 . We also have

ρ =α : α =
b

A
⊗ l̂ :

b

A
⊗ l̂ =

1

A2
(b · b)(l̂ · l̂) =

b2

b2.b2
.(1) =

1

b2

=⇒ gradρ =
∂ρ

∂r
er +

1

r

∂ρ

∂θ
êθ = 0 + 0 = 0. (3.11)

We have that

divα =
∂α

∂r
er +

1

r

∂α

∂θ
eθ

=
∂( bA ⊗ l̂)

∂r
er +

1

r

∂( bA ⊗ l̂)
∂θ

eθ

9



=
1

b2
b⊗ ∂ l̂

∂r
er +

1

rb2
b⊗ ∂ l̂

∂θ
eθ

Noting that l̂ = eθ and hence, ∂ l̂
∂r = 0 and ∂ l̂

∂θ = −er, we have

divα =
1

b2
b⊗ (0.er)−

1

rb2
(b⊗ er)eθ = 0− b

rb2
er · eθ = 0 + 0 = 0. (3.12)

Also,

α : [α gradV ] =
b

A
⊗ l̂ : [(

b

A
⊗ l̂) gradV ] =

1

A2
(b⊗ l̂) :

[
b⊗ [gradV ]T l̂

]
=

1

b4
(b · b) (l̂ · [gradV ]T l̂)

Since l̂ = eθ,

α : [α gradV ] =
1

b4
(b · b)

[
eθ ·

(∂Vr
∂r
er ⊗ er +

Vr
r
eθ ⊗ eθ

)
eθ

]
=
b2

b4

[
eθ ·

v(r)

r
eθ

]
=

1

b2
v(r)

r

Therefore,

α : [α gradV ] =
1

πL2H

∫ θ=2π

θ=0

∫ r=L

r=0

∫ t
2

z=− t
2

1

b2
v

r
rdrdθdz

=
t

πL2H.b2

∫ θ=2π

θ=0

∫ r=L

r=0
ṽ{H(r −R)− ṽH(r − (R+ ∆r))}drdθ

=
t

πL2Hb2

{∫ r=R+∆R

r=R
ṽdr
}

2π =
ṽt

πL2Hb2
.∆R.(2π)

=
2ṽ

L2H
(3.13)

Substituting the results from (3.8), (3.10), (3.11), (3.12) and (3.13) in (3.7), we get

ρ̇ =− 0 · V − 2

b2
divV + 2α : (0⊗ V ) +

2ṽ

L2H
= 0 + 0 + 0 +

2ṽ

L2H

=
2ṽ

L2H
. (3.14)

Since ṽ > 0 for an expanding loop, this shows that ρ̇ > 0. This is justified because as shown before,
ρ̄ give the averaged line length and therefore it has to increase for an expanding loop.

3.1.2 The evolution equation for plastic distortion rate, Lp

There are many quantities whose evolution are governed by the average of the fluctuation terms.
For example, the evolution of Lp defined by (3.3) and obtained using (2.5) is

L̇p = ˙α× V − α̇× V −α× V̇

= α̇× V +α× V̇ + Σα̇ × ΣV + Σα × ΣV̇ − α̇× V −α× V̇

= Σ−curl(α×V ) × ΣV + Σα × ΣV̇ .

(3.15)

10



This shows that the evolution of Lp is governed by the sum of the averages of the fluctuation
terms.

For the example of an expanding circular loop, using the results from (3.20) and (3.8) and the fact
that l̂ = eθ,

Lp =α× V −α× V = (
b

A
⊗ l̂)× V − 0× 0

=
v

b2
b⊗ (eθ × er) = − v

b2
b⊗ ez

=
1

πL2H

∫ θ=2π

θ=0

∫ r=L

r=0

∫ t
2

z=− t
2

− v
b2
b⊗ ezrdrdθdz

=− t

πL2H.b2
b⊗ ez

∫ θ=2π

θ=0

∫ r=L

r=0
vrdrdθ

=− t

πL2H.b2
b⊗ ez

∫ θ=2π

θ=0

∫ r=L

r=0
ṽ{H(r −R)− ṽH(r − (R+ ∆r))}rdrdθ

=− t

πL2H.b2
b⊗ ez

{∫ r=R+∆R

r=R
ṽrdr

}
2π

=− ṽt

πL2H.b2
b⊗ ez

[
r2

2

]R+∆R

R

.2π = −2ṽt{∆R.(2R+ ∆R)}
πL2H.b2

b⊗ ez

=⇒ |Lp|=− 2ṽt.∆R.(2R+ ∆R)

L2H.b2
.b = −2ṽ.(2R+ ∆R).b

L2H
, (3.16)

where ez = er × eθ. From (3.14) and (3.16), we observe that both ρ̇ and |Lp|, for the case of
a uniformly expanding circular loop, are proportional to ṽ, and hence, ρ̇ is proportional to |Lp|.
This observation is in agreement with classical theory which states that ˙̄ρ (where the averaged line
length ρ is a measure of the strength of the material) is proportional to |Lp|. However, in classical
theory, strength of a material cannot decrease whereas ρ̄ can decrease in our case.

3.2 Crystal Plasticity MFDM

Conventional crystal plasticity involves resolution of the system of evolution equations into indi-
vidual slip systems and superposing the effect of plastic strain on different slip systems. Motivated
by the work in [AC12] to evaluate what is involved in working with the evolution of slip-system
level coarse variables (as proposed in [SHZG11, XEA15], but using ad-hoc equations of mesoscopic
evolution as discussed in Section 1), we consider a refined description, in which we define state
variables with respect to individual slip system and derive their evolution. The state variables that
describe this model are:

α,

al := χlα, (3.17a)

ρl := al : al. (3.17b)

Here, α is the dislocation density tensor, χl(x, t) is the characteristic function of dislocations of
slip system l (with normal nl and slip direction bl) at position x and al and ρl are the dislocation
density tensor and total dislocation density respectively, corresponding to slip system l.

11



The characteristic function χl(x, t) indicates whether the point x at time t is occupied by a dis-
location of slip system l. We denote the exponential operator as e(.). The characteristic function
can be approximated as

χl(x, t) ≈ e
(
−
(
|αnl|
c1

)m)
e

(
−

(
||b̃l.α̃α̃T .b̃l|−1|

c2

)n)
, (3.18)

where

b̃l =
bl

|bl|

α̃ =
α

|α|
(3.19)

and c1 and c2 are very small positive constants and m and n are very large positive constants.
For a dislocation to belong to slip system l, it must satisfy α · nl = 0 (as α · nl = (b ⊗ l̂) · nl =
(l̂ · nl)b = 0.b = 0, where b and l̂ are the Burgers vector and line direction of the dislocation

respectively). In that case, the first term on the rhs of (3.18), e
(
−
(
|αnl|
c1

)m)
, is 1 as |αn

l|
c1

= 0.

Otherwise (when α · nl 6= 0), the first term e
(
−
(
|αnl|
c1

)m)
is approximately 0, since c1 is a small

positive constant and m is a very large positive constant. Moreover, if the Burgers vector b of the
dislocation coincides with bl, the term |b̃l.α̃α̃T .b̃l|= 1. Hence, in that case, the second term on the

rhs of (3.18) is 1, since
(
||b̃l.α̃α̃T .b̃l|−1|

c2

)
= 0. Otherwise, it is approximately 0, since c2 is a small

positive constant and n is a very large positive constant. Thus, the first term decides whether the
dislocation is in the slip plane of the slip system, while the second term decides whether it has
the same Burgers vector as the slip system. Only when both of these are true, we have χl = 1.
Otherwise, we have χl ≈ 0.

An implied assumption in the definition of the characteristic function and the slip system variables
is that a particular spatial location is occupied at any instant by a dislocation of a single slip system,
which excludes the proper accounting of junctions in the definition of the slip system variables, even
though the microscopic dynamics does not involve any such exclusion.

3.3 The coarse variables

We are interested in understanding the plastic behavior of metals at a length scale which is much
coarser than the atomic length scale and at a time scale comparable to real life load applications
(which is much larger compared to the time scale of the motion of dislocations, set by the drag).
Therefore, we are interested in the averaged theory of the microscopic dynamics, which involves the
evolution of the coarse variables corresponding to the variables defined in (3.17), which are α, al

and ρl. In order to do so, we also need to know the evolution of the averaged characteristic function
χl, since χl appears on the rhs of their evolution equations (3.17). In this Section, we derive the
evolution of these coarse variables. Corresponding brackets have been marked with the same color
to make the equations look more readable. The primary averaged variables have been marked in
blue, to show how much of the rhs is known in terms of them. We also define the following variables
to make the equations look more readable and compact:

P :=
|αnl|
c1

12



Q :=
||b̃l.α̃α̃T .b̃l|−1|

c2

p := b̃l.α̃α̃T .b̃l.

By their definition, P,Q, and p are indexed by the slip-system indicator l, and this will be under-
stood in the following without explicit notation.

3.3.1 The evolution equation for averaged dislocation density, α

The evolution of α (following [AR06]) is given by

α̇ = −curl(α× V +Lp). (3.20)

3.3.2 The evolution equation for the averaged characteristic function, χl, for slip
system l

χl is obtained by applying the averaging operator (2.1) to (3.18). Its evolution equation is

˙
χl =: Bl(state) = −m

c1
e(−Pm) e(−Qn) Pm−1

[
−αnl ·

{
curl(α× V +Lp)nl.

(
1

|αnl|

)}]
− n

c2
e(−Pm) e(−Qn) Qn−1 sgn(|p|−1) sgn(p)

b̃l ·

{(
−curl(α× V +Lp)

( 1

|α|

)
+α : curl(α× V +Lp)

(
1

|α|3

))
α̃T

+ α̃

(
(−curl(α× V +Lp))T

( 1

|α|

)
+α : curl(α× V +Lp)

( 1

|α|3
))}

· b̃l

− m

c1

{
e(−Pm) e(−Qn) Pm−1

(
Σαnl · Σ−curl(α×V )nl

(
1

|αnl|

)

+ Σ−(αnl)·(curl(α×V )nl) Σ
1

|αnl|

)

+ Σe(−Pm) e(−Qn) Pm−1

(
− 1

c1

(
αnl · {curl(α× V +Lp)nl}

+ Σαnl · Σ−curl(α×V )nl
)( 1

|αnl|

)
+ Σ−(αnl)·(curl(α×V )nl) Σ

1

|αnl|

)

+ Σe(−Pm) e(−Qn) ΣPm−1

(
− 1

c1

(
αnl · {curl(α× V +Lp)nl}

+ Σαnl · Σ−curl(α×V )nl
)( 1

|αnl|

)
+ Σ−(αnl)·(curl(α×V )nl) Σ

1

|αnl|

)}

− n

c2

[
e(−Pm) e(−Qn) Qn−1

13



sgn(|p|−1) sgn(p) b̃l ·

{(
Σ−curl(α×V )Σ

1
|α|

−
[{(

Σα : Σ−curl(α×V )
)( 1

|α|3
)

+ Σ−α:curl(α×V )Σ
1
|α|3
}
α+ Σ

−α:curl(α×V )

|α|3 Σα
])

α̃T

+ α̃

(
Σ−(curl(α×V ))T Σ

1
|α|

−
[{(

Σα : Σ−(curl(α×V ))T
)( 1

|α|3
)

+ Σ−α:(curl(α×V ))Σ
1
|α|3
}
αT + Σ

−α:(curl(α×V ))

|α|3 ΣαT
])}

b̃l

+ sgn(|p|−1)

(
Σsgn(p)Σ

b̃l·
[
(− curl(α×V )

|α| −
(
α:curl(α×V )

|α|3

)
α)α̃T

+α̃

(
− {curl(α×V )}T

|α| −
(
α:{curl(α×V )}

|α|3

)
αT

)]
b̃l
)

+ Σsgn(|p|−1)

(
Σ
sgn(p) b̃l·

[(
− curl(α×V )

|α| −
(
α:curl(α×V )

|α|3

)
α

)
α̃T

+α̃

(
− {curl(α×V )}T

|α| −
(
α:{curl(α×V )}

|α|3

)
αT

)]
b̃l
)

+ Σe(−Pm) e(−Qn) Qn−1

sgn(|p|−1) sgn(p) b̃l ·

{({
−curl(α× V +Lp)

( 1

α

)
+ Σ−curl(α×V )Σ

1
|α|
}

−
[{(
−α : curl(α× V +Lp) + Σα : Σ−curl(α×V )

)( 1

|α|3
)

+ Σ−α:curl(α×V )Σ
1
|α|3
}
α+ Σ

−α:curl(α×V )

|α|3 Σα
])

α̃T

+ α̃

({
(−curl(α× V +Lp))T

( 1

α

)
+ Σ−(curl(α×V ))T Σ

1
|α|
}

−
[{(
−α : (curl(α× V +Lp)) + ΣαT : Σ−(curl(α×V )T )

)( 1

|α|3
)

+ Σ−α:(curl(α×V ))Σ
1
|α|3
}
αT + Σ

−α:(curl(α×V ))

|α|3 ΣαT
])}

b̃l

+ sgn(|p|−1)

(
Σsgn(p)Σ

b̃l·
[
(− curl(α×V )

|α| −
(
α:curl(α×V )

|α|3

)
α)α̃T
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+α̃

(
− {curl(α×V )}T

|α| −
(
α:{curl(α×V )}

|α|3

)
αT

)]
b̃l
)

+ Σsgn(|p|−1)

(
Σ
sgn(p) b̃l·

[(
− curl(α×V )

|α| −
(
α:curl(α×V )

|α|3

)
α

)
α̃T

+α̃

(
− {curl(α×V )}T

|α| −
(
α:{curl(α×V )}

|α|3

)
αT

)]
b̃l
)

+ Σe(−Pm) e(−Qn) ΣQn−1

sgn(|p|−1) sgn(p) b̃l ·

{({
−curl(α× V +Lp)

( 1

α

)
+ Σ−curl(α×V )Σ

1
|α|
}

−
[{(
−α : curl(α× V +Lp) + Σα : Σ−curl(α×V )

)( 1

|α|3
)

+ Σ−α:curl(α×V )Σ
1
|α|3
}
α+ Σ

−α:curl(α×V )

|α|3 Σα
])

α̃T

+ α̃

({
(−curl(α× V +Lp))T

( 1

α

)
+ Σ−(curl(α×V ))T Σ

1
|α|
}

−
[{(
−α : (curl(α× V +Lp)) + ΣαT : Σ−(curl(α×V )T )

)( 1

|α|3
)

+ Σ−α:(curl(α×V ))Σ
1
|α|3
}
αT + Σ

−α:(curl(α×V ))

|α|3 ΣαT
])}

b̃l

+ sgn(|p|−1)

(
Σsgn(p)Σ

b̃l·
[
(− curl(α×V )

|α| −
(
α:curl(α×V )

|α|3

)
α)α̃T

+α̃

(
− {curl(α×V )}T

|α| −
(
α:{curl(α×V )}

|α|3

)
αT

)]
b̃l
)

+ Σsgn(|p|−1)

(
Σ
sgn(p) b̃l·

[(
− curl(α×V )

|α| −
(
α:curl(α×V )

|α|3

)
α

)
α̃T

+α̃

(
− {curl(α×V )}T

|α| −
(
α:{curl(α×V )}

|α|3

)
αT

)]
b̃l
)]

−m Σe(−Pm) e(−Qn) Pm−1 Σ

(
(αnl)·(−curl(α×V )T )nl

c1|αnl|

)

− n

(
Σe(−Pm) e(−Qn) Qn−1

Σ
1
c2
sgn(p) b̃l·

[{
− curl(α×V )

|α| +(α:curl(α×V )

|α|3 ) α
}
α̃T +α̃

{
− {curl(α×V )}T

|α| +(α:{curl(α×V )}
|α|3 ) αT

}]
b̃l
)
,

(3.21)
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where Bl(state) represents the state function given by the rhs of (3.21). The derivation of (3.21)
is given in Appendix A.2.

3.3.3 The evolution equation for the averaged dislocation density tensor, al, for slip
system l

al is obtained by applying the averaging operator (2.1) to (3.17a). Its evolution equation is

˙
al = Bl(state) α− curl[χl (al × V )]− curl(al × ΣχlΣV ) + 2 χl (α× V )[X(gradχl)]

+ Σχ̇ Σα − curl
(

Σal × ΣV l
)

+ 2 χl Σα × ΣV [X(gradχl)] + 2 Σχl Σα×V [X(gradχl)]

+ 2 Σχl(α×V ) ΣX(gradx′χ
l), (3.22)

where Bl is defined in the discussion following (3.21) in Section 3.3. The derivation of (3.22) is
given in Appendix A.3. The merit of (3.22) is that it shows what the exact evolution equation of

al should be (cf. [XEA15]). It is cumbersome, to say the least and, moreover, contains fluctuation
terms whose evolution are given by other pde, resulting in an ‘unsolvable’ infinite hierarchy.

3.3.4 The evolution equation for the averaged total dislocation density, ρl, for slip
system l

ρl is obtained by applying the averaging operator (2.1) to (3.17b). Its evolution is given by

˙
ρl =− 2Bl(state) ρl − gradρl · (χl V ) + ρ gradχl · (χl V )− 2 ρl div(χl V ) + 2 ρl gradχl · V

+ 2 (χl α) : (αgradV ) + 2 (χl α) : (divα⊗ V )

+ 2 Σ

−m e(−Pm)e(−Qn)Pm−1

(
(αnl)·(−curl(α×V )T )nl

c1|αnl|

)
− n

c2
e(−Pm)e(−Qn)Qn−1·

sgn(p) b̃l·
[{
− curl(α×V )

|α| +(α:curl(α×V )

|α|3 ) α
}
α̃T +α̃

{
− {curl(α×V )}T

|α| +(α:{curl(α×V )}
|α|3 ) αT

}]
b̃l




Σρl

− gradρl · Σχl ΣV + ρ gradχl · Σχl ΣV − 2 ρl div(Σχl ΣV )

− Σgradρl · ΣχlV + Σρ Σgradχl · (χl V + ΣχlΣV ) + Σρ gradχl · Σχl V − 2 Σρl Σdiv(χl V )

+ 2 Σρl Σgradχl · V + 2 Σρl gradχl · ΣV + Σχl Σα :
(
α gradV + Σα ΣgradV

)
+ Σχlα : Σα gradV

+ 2 Σχl Σα : (divα⊗ V + Σdivα ⊗ ΣV ) + Σχlα : Σdivα⊗V

(3.23)

where Bl(state) is defined in the discussion following (3.21) in Section 3.3. The derivation of (3.23)

is given in Appendix A.4. The equation (3.23) is the exact evolution equation of ρl. The same
remarks as to the practicality of this exact equation as in Section 3.3.3 applies.

Remark In the evolution equations for ᾱ (3.20), āl (3.22) and ρ̄l (3.23), the plastic distortion rate
Lp appears. It is defined in (3.3) and is a fluctuation term (Lp = Σα × ΣV ). As shown in Section
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2, the hierarchy can involve equations of evolution for the fluctuations. We derived the evolution
equation for Lp in (3.15) which is as follows:

L̇p = Σ−curl(α×V ) × ΣV + Σα × ΣV̇ .

The Lp for a uniformly expanding circular loop was obtained in Section 3.1 and is given by (3.16).
However, this was possible due to the drastic assumption of uniform velocity (of same magnitude
pointing radially outward) at all points of the loop. In reality, the value of the local velocity is
difficult to obtain without consideration of the microscopic DD problem, as it depends on the Peach-
Koehler force acting on the dislocation segments, which is a function of the internal stresses. This
makes it essentially impossible to define an evolution equation for Lp in realistic situations without
some sort of ‘on-the-fly’ coupling to local DD calculations. The coupled DD-MFDM strategy that
is described and implemented in [CPZ+20] defines evolution equations for Lp using appropriate
time averaging of Discrete Dislocation Dynamics is a first demonstration towards achieving exactly
this goal for realistic applied loading rates.

4 Conclusion

We stated some descriptors of the microscopic dynamics and obtained the evolution of the coarse
variables generated from such descriptors. The coarse variables give an idea of the averaged behavior
of the system at a much coarser length and time scale. We see that the evolution of the total
dislocation density (3.6) contains the averages of fluctuations, and hence is exact but not closed.
We considered a refined description in which we resolved the dynamics into slip systems. We see
that the evolution of the dislocation density tensor (3.22) and the total dislocation density (3.23) of
any particular slip system is extremely cumbersome, which shows the limitations of such a refined
description. The evolution equations of the coarse variables involve many average terms, average
of fluctuation terms and their partial derivatives, all of which have their own evolution given by
other pdes. Thus, we get an infinite hierarchy of non-linear non-closed coarse evolution pdes, which
cannot be solved for all practical purposes. The CDD framework [HZG07, Hoc16, SZ15] postulates
the microscopic dynamics and uses closure assumptions of their own to cut off the infinite hierarchy
of equations. In contrast, MFDM (3.2), which follows by averaging the equations of FDM (3.1) in
space and time, is based on the fundamental statement of the conservation of Burgers vector (which
is a physically observed fact). While cumbersome, one could try to work with these exact equations
if they were known in full detail. If this is not the case, the justifications for using such infinite
hierarchies is scarce. It is much more reasonable, and important to focus on closure assumptions,
generated from the actual stress coupled microscopic dislocation interaction dynamics and their
averaging, at a lower level in the hierarchy, about which such ‘kinematic’ infinite hierarchies say
nothing.

In previous work starting from [AR06], the system is closed using physics-based phenomenolog-
ical modeling at the lowest level of the hierarchy as a trade-off with practicality (see the dis-
cussion surrounding (3.2), in which Lp and V are phenomenologically specified). This approach
has been quite successful in addressing a promising array of problems in modern plasticity the-
ory related to the computation of patterning, dislocation internal stress, size effects, polygoniza-
tion, and slip transmission at grain boundaries among others [RA06, Ach07, PRAD10, MBA10,
FAB11, PAR11, PDA11, Ach11, DAS16, FBE+09, TVC+07, TBFB10, RWF11, TVFB08, DTBF15,
VBF09, DBTL20, BTL20, GBG+20], including long-standing and recent fundamental challenges

17



in the prediction of large-deformation, dislocation mediated elastic and elastic-plastic response
[AA20a, AZA20, AA20b]. Despite the phenomenology, the approach has provided two distinct
benefits:

1. It is fair to say that beyond the modeling in 1 space dimension, the plastic distortion in
classical plasticity theory has, at best, only a thermodynamic physical meaning with no
concrete, tangible connection to the mechanics of dislocations. The MFDM approach based on
space-time averaging of microscopic dislocation mechanics brings out an explicit, completely
defined, connection between the plastic strain rate employed in phenomenological theories
of plasticity and the motion and geometry of an evolving microscopic array of dislocations,
as explained in the discussion surrounding (3.2). Obviously, this has many benefits, even
for a phenomenological specification of the macroscopic plastic strain rate. Moreover, the
MFDM framework has allowed for a first unification between phenomenological J2 and crystal
plasticity theories and quantitative dislocation mechanics.

2. With a single extra material parameter beyond a classical plasticity model (and two at finite
deformations), the MFDM framework has enabled a significant variety of phenomena to be
modeled, in qualitative and quantitative accord with experimental results.

In the work presented in [CPZ+20], the phenomenological constitutive assumptions in MFDM are
replaced with inputs obtained by appropriate time averaging of Discrete Dislocation Dynamics.
To our knowledge, this is the first demonstration of a coupled DD-continuum plasticity framework
that can be exercised at quasi-static loading rates and makes no assumptions on material response
beyond the elasticity of the material and a model for thermal activation of dislocations past sessile
junctions (which is not a part of the microscopic DD model). For reasons mentioned in [CPZ+20],
a first systematic improvement of the DD-MFDM coupled model would be to add the equation of
the evolution of the total density (3.6) to the field equations of MFDM (with its non-closed terms
involving fluctuations supplied by local space-time averaged DD response), which would provide a
further local driving constraint (the value of ρ̄) to each of the local DD calculations beyond the
stress of the macroscopic model. Of course, even with dropping all the fluctuation terms in (3.6),
that equation can augment the phenomenological mode of application of MFDM, enhancing the
description of material strength beyond the currently prevalent non-decreasing phenomenological
descriptions (e.g. the Voce Law). These are some of the practical benefits of pursuing the space-time
averaged hierarchy of dislocation mechanics as developed in this paper.

Appendix A Derivation of evolution equations

A.1 Total dislocation density, ρl

From (3.4), we have

ρ = α : α (A.1)

We differentiate (A.1) in time to get

ρ̇ = 2 α : α̇ = −2 α : curl(α× V ) = −2αij [curl(α× V )]ij

= −2αijejmn(α× V )in,m = −2αijejmnenpq(αipVq),m

= −2(δjpδmq − δjqδmp)[αijαip,mVq + αijαipVq,m]
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= −2[αijαij,mVm + αijαijVm,m − αijαim,mVj − αijαimVj,m]

= −2 [
1

2
grad(α : α) · V +α : α(divV )−α : (divα⊗ V )−α : {α gradV }]

= −2 [
1

2
gradρ · V + ρ(divV )−α : (divα⊗ V )−α : {α gradV }]

= −gradρ · V − 2ρ(divV ) + 2α : (divα⊗ V ) + 2α : {α gradV } (A.2)

We apply the averaging operator to both sides of (A.2) to get

ρ̇ = −grad ρ · V − 2 ρ divV − Σgradρ · ΣV − 2ΣρΣdivV + 2 α : (divα⊗ V ) + 2 α : {α gradV }.
(A.3)

Using (A.3) and the facts that

α : {α gradV } = α : {α gradV }+α : Σα ΣgradV + Σα : Σα gradV

α : (divα⊗ V ) = α : (divα⊗ V ) +α : (Σdivα ⊗ ΣV ) + Σα : Σdivα⊗V ,

we get the evolution of ρ as (3.6) in section 3.

A.2 The characteristic function, χl

We will use the following results in the derivation:

• If f is a vector, then

d

dt
|f | = f · ḟ

|f |
, (A.4)

which gives,

˙|f | = f · ḟ
|f |

= f · ḟ . 1

|f |
+ Σf ·ḟΣ

1
|f | =

(
f · ḟ + Σf · Σḟ

)
.

1

|f |
+ Σf ·ḟΣ

1
|f | . (A.5)

• If q is a scalar,

d

dt
|q| = sgn(q)q̇, (A.6)

which gives,

˙|q| = sgn(q) q̇ = sgn(q) q̇ + Σsgn(q)Σq̇. (A.7)

We define

χl := e(−Pm) e(−Qn), (A.8)

where P = |αnl|
c1

and Q = ||b̃l.α̃α̃T b̃l|−1|
c2

. We also denote p = b̃l.α̃α̃T b̃l. Hence, Q = ||p|−1|
c2

. Taking
time derivative of (A.8) and using (A.4) and (A.6), we have,

χ̇l = −m e(−Pm)e(−Qn)Pm−1Ṗ − n e(−Pm)e(−Qn)Qn−1Q̇ (A.9)
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From (A.9), we have,

˙
χl =−m

[
e(−Pm) e(−Qn) Pm−1 Ṗ + Σe(−Pm) e(−Qn) Pm−1 ΣṖ

]
− n

[
e(−Pm) e(−Qn) Qn−1 Q̇+ Σe(−Pm) e(−Qn) Qn−1 ΣQ̇

]
=−m e(−Pm) e(−Qn) Pm−1 Ṗ − n e(−Pm) e(−Qn) Qn−1 Q̇

−m Σe(−Pm) e(−Qn) Pm−1 ΣṖ − n Σe(−Pm) e(−Qn) Qn−1 ΣQ̇

=−m
(
e(−Pm) e(−Qn) Pm−1 + Σe(−Pm) e(−Qn) ΣPm−1

)
Ṗ

− n
(
e(−Pm) e(−Qn) Qn−1 + Σe(−Pm) e(−Qn) ΣQn−1

)
Q̇

−m Σe(−Pm) e(−Qn) Pm−1 ΣṖ − n Σe(−Pm) e(−Qn) Qn−1 ΣQ̇

=−m
(

(e(−Pm) e(−Qn) + Σe(−Pm) e(−Qn)) Pm−1 + Σe(−Pm) e(−Qn) ΣPm−1
)
Ṗ

− n
(

(e(−Pm) e(−Qn) + Σe(−Pm) e(−Qn)) Qn−1 + Σe(−Pm) e(−Qn) ΣQn−1
)
Q̇

−m Σe(−Pm) e(−Qn) Pm−1 ΣṖ − n Σe(−Pm) e(−Qn) Qn−1 ΣQ̇

=−m
(
e(−Pm) e(−Qn) Pm−1 Ṗ + Σe(−Pm) e(−Qn) Pm−1 Ṗ + Σe(−Pm) e(−Qn) ΣPm−1 Ṗ

)
− n

(
e(−Pm) e(−Qn) Qn−1 Q̇+ Σe(−Pm) e(−Qn) Qn−1 Q̇+ Σe(−Pm) e(−Qn) ΣQn−1 Q̇

)
−m Σe(−Pm) e(−Qn) Pm−1 ΣṖ − n Σe(−Pm) e(−Qn) Qn−1 ΣQ̇

(A.10)

From the definition of P in the discussion following (A.8) and using (A.4),

Ṗ =
1

c1

(α nl) · (α̇ nl)
|α nl|

= − 1

c1

(α nl) · {curl(α× V ) nl}
|α nl|

(A.11)

Using (A.5),

Ṗ =
1

c1

[(
αnl · ˙

αnl + Σαnl · Σα̇nl
)( 1

|αnl|

)
+ Σ(αnl)·(α̇nl) Σ

1

|αnl|

]

=
1

c1

[(
(αnl) · (α̇nl) + Σαnl · Σα̇nl

)( 1

|αnl|

)
+ Σ(αnl)·(α̇nl) Σ

1

|αnl|

]

=
1

c1

[(
− (αnl) · (curl(α× V +Lp)nl) + Σαnl · Σα̇nl

)( 1

|αnl|

)
+ Σ−(αnl)·(curl(α×V )nl) Σ

1

|αnl|
]
. (A.12)

From the definition of p and Q in the discussion following (A.8) and using (A.6),

Q̇ =
1

c2
sgn(|p|−1) sgn(p) ṗ =

1

c2
sgn(|p|−1) sgn(p) b̃l · ( ˙̃αα̃T + α̃ ˙̃αT )b̃l (A.13)
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Now,

˙̃α =
α̇

|α|
−
(
α : α̇

|α|3

)
α = −curl(α× V )

|α|
+

(
α : curl(α× V )

|α|3

)
α

˙̃αT =
α̇T

|α|
= −{curl(α× V )}T

|α|
+

(
α : {curl(α× V )}

|α|3

)
αT (A.14)

Substituting (A.14) into (A.13),

Q̇ =
1

c2
sgn(|p|−1) sgn(p) b̃l ·

[{
− curl(α× V )

|α|
+ (
α : curl(α× V )

|α|3
) α
}
α̃T

+ α̃
{
− {curl(α× V )}T

|α|
+ (
α : {curl(α× V )}

|α|3
) αT

}]
b̃l (A.15)

Using (A.13),

Q̇ =
1

c2
sgn(|p|−1) sgn(p) ṗ =

1

c2

[
sgn(|p|−1) sgn(p) ṗ+ Σsgn(|p|−1)Σsgn(p)ṗ

]
=

1

c2

[
sgn(|p|−1)

{
sgn(p) ṗ+ Σsgn(p)Σṗ

}
+ Σsgn(|p|−1)Σsgn(p)ṗ

]
=

1

c2

[
sgn(|p|−1) sgn(p) ṗ+ sgn(|p|−1) Σsgn(p)Σṗ + Σsgn(|p|−1)Σsgn(p)ṗ

] (A.16)

Using the definition of p in the discussion around (A.13) ,

ṗ = b̃l · ( ˙̃αα̃T + α̃ ˙̃αT )b̃l

=⇒ ṗ = b̃l · ( ˙̃α α̃T + α̃
˙
α̃T )b̃l (A.17)

Following (3.2), we have

α̇ = −curl(α× V +Lp)

From (A.14),

˙̃α =

(
α̇

1

|α|
+ Σα̇Σ

1
|α|

)
−

{(
α : α̇

|α|3

)
α+ Σ

α:α̇
|α|3 Σα

}

=

(
α̇

1

|α|
+ Σα̇Σ

1
|α|

)
−

{(
α : α̇

|α|3

)
α+ Σ

α:α̇
|α|3 Σα

}

=

(
α̇

1

|α|
+ Σα̇Σ

1
|α|

)
−
[{(

α : α̇+ Σα : Σα̇
) 1

|α|3
+ Σα:α̇Σ

1
|α|3

}
α+ Σ

α:α̇
|α|3 Σα

]
=
(
−curl(α× V +Lp)

1

|α|
+ Σ−curl(α×V )Σ

1
|α|
)
−

[{(
−α : curl(α× V +Lp)

+ Σα : Σ−curl(α×V )
) 1

|α|3
+ Σα:−curl(α×V )Σ

1
|α|3

}
α+ Σ

−α:curl(α×V )

|α|3 Σα

]
. (A.18)
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Similarly, we can obtain
˙
α̃T = αT

|α| by replacing α, α̇, α and α̇ above with their respective transpose
and obtain

˙
α̃T =

(
(−curl(α× V +Lp))T

1

|α|
+ Σ−(curl(α×V ))T Σ

1
|α|
)
−

[{(
−α : (curl(α× V +Lp))

+ ΣαT : Σ−(curl(α×V ))T
) 1

|α|3
+ Σ−α:(curl(α×V ))Σ

1
|α|3

}
αT + Σ

−α:(curl(α×V ))

|α|3 ΣαT

]
. (A.19)

Using (A.16), (A.17), (A.18) and (A.19), we get

Q̇ =
1

c2
sgn(|p|−1) sgn(p) b̃l ·

{({
−curl(α× V +Lp)

( 1

α

)
+ Σ−curl(α×V )Σ

1
|α|
}

−
[{(
−α : curl(α× V +Lp) + Σα : Σ−curl(α×V )

)( 1

|α|3
)

+ Σ−α:curl(α×V )Σ
1
|α|3
}
α+ Σ

−α:curl(α×V )

|α|3 Σα
])

α̃T

+ α̃

({
(−curl(α× V +Lp))T

( 1

α

)
+ Σ−(curl(α×V ))T Σ

1
|α|
}

−
[{(
−α : (curl(α× V +Lp)) + ΣαT : Σ−(curl(α×V )T )

)( 1

|α|3
)

+ Σ−α:(curl(α×V ))Σ
1
|α|3
}
αT + Σ

−α:(curl(α×V ))

|α|3 ΣαT
])}

b̃l

+
1

c2
sgn(|p|−1)

(
Σsgn(p)Σ

b̃l·
[
(− curl(α×V )

|α| −
(
α:curl(α×V )

|α|3

)
α)α̃T

+α̃

(
− {curl(α×V )}T

|α| −
(
α:{curl(α×V )}

|α|3

)
αT

)]
b̃l
)

+
1

c2
Σsgn(|p|−1)

(
Σ
sgn(p) b̃l·

[(
− curl(α×V )

|α| −
(
α:curl(α×V )

|α|3

)
α

)
α̃T

+α̃

(
− {curl(α×V )}T

|α| −
(
α:{curl(α×V )}

|α|3

)
αT

)]
b̃l
)

(A.20)

Using (A.9), (A.12), (A.13), (A.17), (A.18) and (A.19), we get the evolution of χl given by (3.21)
in section 3.

A.3 Dislocation density tensor corresponding to slip system l, al

Following (3.17), the dislocation density corresponding to slip system l is defined as

al := χlα. (A.21)
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We take time derivative of (A.21) to obtain

ȧl = χ̇lα+ χlα̇

= χ̇lα− χlcurl(α× V ).

(A.22)

Using the fact that χl ≈ (χl)2, since χl can (approximately) take either of the values 0 or 1, the
second term on the right hand side above can be written as

χlcurl(α× V ) = χl{curl(α× V )}im ≈ (χl)2emjk{α× V }ik,j

= emjk{χlα× χlV }ik,j − emjk{α× V }ik
∂χl

2

∂χj′

= {curl(χlα× χlV)}im − 2{α× V }ikemjkχl
∂χl

∂χj′

= {curl(al × V l)}im − 2 χl {α× V }ik[X(gradx′χ
l)]km

⇒ χlcurl(α× V ) = curl(al × V l)− 2 χl(α× V )[X(gradx′χ
l)], (A.23)

where emjk is a component of the third-order alternating tensor X and its action on a tensor A is
given by {X(A)}i = eijkAjk, while its action on a vector N is given by {X(N)}ij = eijkNk.

Using (A.22) and (A.23) above, we have

ȧl = χ̇lα− curl(al × V l) + 2 χl(α× V )[X(gradx′χ
l)]. (A.24)

We average both sides of (A.24) to get

˙
al =

˙
χl α+ Σχ̇l Σα − curl(al × V l)− curl

(
Σal × ΣV l

)
+ 2χl(α× V )[X(gradx′χl)] (A.25)

We have

2χl(α× V )[X(gradx′χl)] = 2 χl(α× V ) [X(gradχl)] + 2 Σχl(α×V ) ΣX(gradx′χ
l)

= 2
(
χl α× V + Σχl Σα×V

)
[X(gradχl)] + 2 Σχl(α×V ) ΣX(gradx′χ

l)

= 2 χl (α× V )[X(gradχl)] + 2 χl Σα × ΣV [X(gradχl)] + 2 Σχl Σα×V [X(gradχl)]

+ 2 Σχl(α×V ) ΣX(gradx′χ
l)

Hence, using (A.25), we have

˙
al =

˙
χl α+ Σχ̇ Σα − curl(al × V l)− curl

(
Σal × ΣV l

)
+ 2 χl (α× V )[X(gradχl)] + 2 χl Σα × ΣV [X(gradχl)] + 2 Σχl Σα×V [X(gradχl)]

+ 2 Σχl(α×V ) ΣX(gradx′χ
l) (A.26)

Finally, we use (A.9) and (3.21) to obtain the evolution of al as (3.22) in section 3.
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A.4 Total dislocation density corresponding to slip system l, ρl

The total dislocation density corresponding to slip system l is defined in (3.17) and is given by

ρl := al : al = (χlα) : (χlα) ≈ (χl)2 α : α. (A.27)

We differentiate (A.27) with respect to time to get

ρ̇l = 2χl χ̇l α : α+ 2 (χl)2 α : α̇

= 2χ̇lρl + χl[2α : α̇].

Using (A.2), we have,

ρ̇l = 2χ̇lρl − 2χl
[1

2
gradρ · V + ρ(divV )−α : {α gradV } −α : (divα⊗ V )

]
≈ 2χ̇lρl − (χl)2gradρ · V − 2(χl)2ρ divV + 2χlα : (α gradV ) + 2χlα : (divα⊗ V )

= 2χ̇lρl − {χlgradρ} · (χlV )− 2(χlρ){χl divV }+ 2χlα : (α gradV ) + 2χlα : (divα⊗ V )

= 2χ̇lρl − {gradρl − ρ gradχl} · V l − 2ρl{divV l − gradχl · V }+ 2χlα : (α gradV ) + 2χlα : (divα⊗ V )

= 2χ̇lρl − gradρl · V l + ρ gradχl · V l − 2ρldivV l + 2ρlgradχl · V
+ 2χlα : (α gradV ) + 2χlα : (divα⊗ V ). (A.28)

We average both sides of (A.28) to get the evolution of ρl as

˙
ρl = 2

˙
χl ρl + 2Σχ̇l Σρl − gradρl · V l − Σgradρl · ΣV l + ρ gradχl · V l + Σρ gradχl · ΣV l

− 2 ρl divV l − 2 Σρl ΣdivV l + 2 ρl gradχl · V + 2 Σρl gradχl · ΣV

+ 2 χlα : (α gradV ) + 2 χlα : (divα⊗ V ) (A.29)

Also,

χlα : (α gradV ) = χlα : α gradV + Σχlα : Σα gradV

= (χl α+ Σχl Σα) : (α gradV + Σα ΣgradV ) + Σχlα : Σα gradV

Similarly,

χlα : (divα⊗ V ) = χlα : divα⊗ V + Σχlα : Σdivα⊗V

= (χl α+ Σχl Σα) : (divα⊗ V + Σdivα ⊗ ΣV ) + Σχlα : Σdivα⊗V
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Hence,

˙
ρl = 2

˙
χl ρl + 2Σχ̇l Σρl − gradρl · V l − Σgradρl · ΣV l + ρ gradχl · V l + Σρ Σgradχl · V l

+ Σρ gradχl · ΣV l − 2 ρl divV l − 2 Σρl ΣdivV l + 2 ρl gradχl · V + 2 Σρl Σgradχl · V

+ 2 Σρl gradχl · ΣV +
(
χl α+ Σχl Σα

)
:
(
α gradV + Σα ΣgradV

)
+ Σχlα : Σα gradV

+ 2 (χl α+ Σχl Σα) : (divα⊗ V + Σdivα ⊗ ΣV ) + Σχlα : Σdivα⊗V

=⇒ ˙
ρl = 2

˙
χl ρl − gradρl · V l + ρ gradχl · V l − 2 ρl divV l + 2 ρl gradχl · V

+ 2 (χl α) : (αgradV ) + 2 (χl α) : (divα⊗ V ) + 2Σχ̇l Σρl − Σgradρl · ΣV l

+ Σρ Σgradχl · V l + Σρ gradχl · ΣV l − 2 Σρl ΣdivV l + 2 Σρl Σgradχl · V

+ 2 Σρl gradχl · ΣV + Σχl Σα :
(
α gradV + Σα ΣgradV

)
+ Σχlα : Σα gradV

+ 2 Σχl Σα : (divα⊗ V + Σdivα ⊗ ΣV ) + Σχlα : Σdivα⊗V

(A.30)

Finally, using (A.9) and (3.21), we have the evolution equation for ρl as (3.23) in section 3.
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