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HIGHLIGHTS

o Finite element models were established
for various lattices with random-
distributed missing/broken bars.

o The imperfection sensitivity coefficients
were defined to measure and compare
the imperfection sensitivity among
different lattices.

o Deformation-mode conversion from
stretching-dominant to bending-
dominant leads to extremely high
imperfection-sensitivity.

e Missing-bar defects have crucial effects
on Poisson’s ratios of 2D lattice mate-
rials, especially for the zero and nega-
tive types.
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GRAPHICAL ABSTRACT

Which Types of 2D Lattice Materials Are Most Sensitive to Missing-Bar Defects

Typical 2D lattices

Imperfection sensitivity coefficients of the elastic moduli and Poisson’s ratios

Conclusion: The shear modulus of DAH and REH, the vertical modulus of SREH are most sensitive to the defects, while
FPSH demonstrates the highest flaw tolerance overall.

ABSTRACT

Two-dimensional (2D) lattice materials with well-designed microstructures exhibit extraordinary properties such
as zero and negative Poisson’s effects, and play a crucial role in industrial fields. However, inevitable defects
from manufacturing, storage, transportation, and service may compromise their microstructures and function-
alities. Therefore, it is important but still unclear: which microstructures and associated properties are most or
least sensitive to defects. The current study investigated the effects of bar-missing/broken defects on the elastic
properties of six typical honeycomb structures—Hexagonal Honeycomb, Diamond Honeycomb, Semi-Re-Entrant
Honeycomb, Four-Pointed Star Honeycomb, Re-Entrant Honeycomb, and Double Arrowhead Honeycomb—
which are categorized into positive, zero, and negative Poisson’s ratio groups. A finite element model incor-
porating the random distributed defects was developed and the imperfection sensitivity coefficient was defined
to quantitatively analyze the sensitivity of elastic properties to missing bars. The results show that the shear
modulus of Double Arrowhead Honeycomb and Re-Entrant Honeycomb, and the vertical modulus of Semi-Re-
Entrant Honeycomb are most sensitive to the defects, while Four-Pointed Star Honeycomb demonstrates the
highest flaw tolerance overall. The underlying mechanisms for defect-sensitivity or flaw-tolerance are closely
related to the deformation mode and nodal connectivity of these lattice structures.
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1. Introduction

Lattice materials are composed of interconnected bars. By carefully
designing different permutations of these bars in regular and periodic
arrangements, unique micro-lattice structures are created for specialized
functions and applications [1,2]. These materials are valued for their
lightweight nature and distinctive mechanical properties such as strong
anisotropy and extraordinary Poisson’s effects [3,4], and have been
widely used in highly demanding engineering environments where
conventional materials fall short. Especially, the rapid development and
commercialization of additive manufacturing (also well known as 3D
printing) technologies has been facilitating the precise productions of
lattice materials with more complex microstructures [1,5-7]. However,
the elegant and complex microstructure design is usually a double-edged
sword: it helps achieve extraordinary properties while reducing
robustness and reliability. It is well-known that defects/flaws are inev-
itable, always accompanying materials/structures throughout their
whole life cycle—from manufacturing, to storage, transportation, and
application. Thus, important questions arise: How do microstructure
flaws affect the mechanical properties of typical lattice materials?
Which type of lattice materials and what properties of theirs are most/
least sensitive to the flaws? How can we make a quick evaluation on the
flaw-sensitivity (or flaw-tolerance) of a lattice design? All these ques-
tions are yet to be answered and ask for more systematic and compre-
hensive research.

Poisson’s ratio is an important elastic parameter measuring the ratio
of lateral strain to axial strain when a material is uniaxially stretched or
compressed. It plays an important role in determining the material’s
deformation characteristics, stability, and strength. Although its theo-
retical value ranges from -1 to 0.5, Poisson’s ratio of common engi-
neering materials is between 0.1 and 0.5 [8]. However, through
microstructure designs in lattice materials, their Poisson’s ratios can be
engineered beyond the common range of conventional materials, and
then the extraordinary properties, functions and applications follow as a
result. As illustrated in Fig. 1, six typical two-dimensional (2D) lattice
materials are categorized into three groups according to their Poisson’s
ratios: positive, zero, and negative Poisson’s ratios, referred to be PPR,
ZPR, and NPR for briefness, respectively. All their periodic unit cell can
be determined by three geometric parameters—the bar length [, the bar
thickness t, and the tilted angle 6. Hexagonal honeycomb (HH) and
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diamond honeycomb (DH), as two typical PPR lattice materials, are
widely utilized as sandwich core materials in engineering due to their
excellent impact resistance and energy absorption capacity [9], such as
in the application of fiber reinforced composite honeycomb
[5-7,10-141, self-locking structural honeycomb [15], self-folding hon-
eycomb [16] and some hierarchical honeycombs [11,17,18]. ZPR lattice
materials including the semi-re-entrant honeycomb (SREH) and four-
pointed star honeycomb (FPSH) have numerous applications in aero-
space [19-24] and tissue engineering [25-28], in which the material
deformation in one direction is desired to be unaffected by the other
direction. The re-entrant honeycomb (REH) and double arrowhead
honeycomb (DAH) are taken as two typical NPR structures, and have
great applications in biomedical engineering, e.g., stents [29-31], car-
diac patches [32], wearable device [33,34], bone implant [35-37], since
they can provide better compliance to complex surfaces and movements
of human organs.

Many studies on the mechanical advantages and applications of these
lattice materials can be found in the literature, but few give sufficient
attention to their defects. Regarding the defect issue, Gibson, Fleck, and
their respective coworkers published several pioneering works in 1990s
[39-43]. For example, Gibson and his coworkers investigated the effects
of random missing cell walls, cell face curvature, and cell wall corru-
gations on the mechanical properties of HHs through FEM simulations,
and found that the defect existence caused a sharp decrease in the
effective mechanical properties [39-42]. Chen et al. (1999) systemati-
cally studied the influence of six types of morphological imperfec-
tions—waviness, non-uniform cell wall thickness, cell-size variations,
fractured cell walls, cell-wall misalignments, and missing cells—on the
yielding of HHs by FEM analyses, and concluded that these defects may
have knock-down effect on the hydrostatic yield strength due to the
defect-induced switch in deformation mode from cell wall stretching to
cell wall bending [43]. Followingly, there are an increasing number of
studies conducted to probe into more details and more aspects on the
topic. Li et al. (2005) conducted a research on the effective Young’s
modulus and Poisson’s ratios of HHs with the defects including Voronoi
irregular structures and non-uniform cell walls, and they suggested that
the effective Young’s modulus is significantly affected by these defects
but the Poisson’s ratio is not [44]. Symons and Fleck (2008) systemat-
ically investigated the effects of missing bars, misplaced nodes, and
wavy cell walls on the effective shear moduli and bulk moduli of HHs,

Type Typical lattices

Major Application

PPR

ZPR

NPR

Geometric Parameters

0,1t 1

Fig. 1. Typical 2D lattice materials are grouped by their Poisson’s ratios: Positive Poisson’s ratios (PPR), Zero Poisson’s ratios (ZPR), Negative Poisson’s ratios (NPR);
their major applications are also listed, respectively. (Note: the subpicture on the “stent” is adapted from Ref [38].)
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and found that the defects distinctly compromised their bulk moduli but
had little effects on their shear moduli [45]. Zhang et al. (2010) analyzed
the impact resistance of a metal hexagonal honeycomb with missing cell
walls [46]. However, most of these studies focused on the lattice ma-
terials of HHs. Romijn and Fleck investigated the imperfection sensi-
tivity of in-plane modulus and fracture toughness for five morphologies
of 2D lattice: the isotropic triangular honeycombs, HHs, Kagome lat-
tices, 0/90° squares, and +45° squares, but their assume imperfection is
in form of displaced nodes [47]. Tankasala et al. (2017) studied the
finite-strain uniaxial tensile response of 2D elastoplastic lattices
including triangular, Kagome, DH, and HH, and the sensitivity of
macroscopic ductility and tensile strength to geometric imperfection is
also explored by considering the randomly misplaced joints and an array
of broken cell walls [48]. Liu et al. (2014) studied the effect of irregu-
larity, residual convex units and stresses on the effective mechanical
properties of REH using FEM simulations, and found that the these de-
fects have significant influence on the effective elastic moduli, yield
strength, shear moduli, and Poisson’s ratio of REH [49]. In summary,
most of the existing defect-sensitivity studies mainly focused on HH,
insufficient attentions have been paid to other typical lattice structures
of PPR, ZPR, and NPR. Moreover, these studies have yet to systemati-
cally address the central question we raised here: Which types of lattice
materials and what properties of theirs are most/least sensitive to the
flaws?

To well address the questions above, the current work systematically
conducted FEM simulations to study the influences of random located
missing/broken bars on the elastic properties of six lattice structures:
HH, DH, SREH, FPSH, REH, and DAH, fully covering three major groups:
PPR, ZPR, and NPR. The remaining of the paper is arranged in the
following way: the FEM models with the random missing bars are
established in Section 2; the results and discussions are presented in
Section 3; and, Section 4 gives a summary of the major conclusions.

2. FEM model and verification

FEM simulations were conducted using the widely used commercial
software Abaqus (Version 2016). The geometrical models and boundary
conditions are illustrated in Fig. 2, with examples of perfect HH sub-
jected to the uniaxial tensile loads along the x and y directions, and the
simple shear load in the x-y plane. In the models, a sufficient number of
periodic cells are needed to avoid the dispersion of simulation results
due to the size or boundary effects, and our trial tests show that 70
periodic cells in each dimension are generally enough, as a result, 70x70
= 4900 cells in total. The geometrical parameters in FEM models are all
set to be dimensionless and thus the effective moduli acquired from our
simulation results are consistent with the Young’s moduli of the solid
material. All the bars are slender with a square cross-section, the length [
=1 (unit length), cross-section edge t = 0.02, correspondingly the aspect
ratio a = I/t = 50. All the tilted angle § = 30°. The bars are assumed to be

(a)

-~ (b)
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rigid-jointed. A 3-node quadratic beam element B32 is adopted for the
bars. Mesh converge analysis had been performed to ensure the simu-
lation results to be consistent and reliable before starting systematic
simulations, and the element size around 0.05 was finally adopted. All
the material parameters of the models are set as those of stainless steel, i.
e. E; = 209GPa and vs = 0.3. From the FEM simulations, five effective
elastic properties can be obtained, specifically, the tensile moduli E1;
and Eoo, the Poisson’s ratios v1o and vo7, and the shear modulus Goq,
where subscripts 1 and 2 represent the x and y directions, respectively.
In particular, the specific formulae are as follows:

vn= = —AAy—//LLy @
En =72 5 Z/y %ﬁ ©)
Vi = *% = - AA,;//II: 4
Gy = 021 :FX/Zer )

N 2621 AX / Ly

Here L, and L, denote the sample dimensions along the x and y di-
rections, respectively; A, represents the uniaxial stretch along the x
direction, while A, is the accompanying contraction/expansion in the y
direction due to the Poisson’s effect; similarly, A, and A,, denote the
uniaxial stretch along the y direction and the accompanying contrac-
tion/expansion in the x direction, respectively. Fx and F, refer to the
resultant reaction forces at the constrained boundaries. 6,5 and ¢,4 are
stress and strain components in the plane, with the subscripts a, f =
1, 2. Note that Gy, can also be calculated with analogy to Eq. (5) and
G12 = Go; according to the theory of elasticity.

As mentioned in the previous section, random defects, such as bar
missing during the fabrication process or bar broken in the serving stage,
are usually inevitable in the whole life cycle of the lattice structures. To
this end, randomly distributed defects in forms of missing/broken bars
were introduced to the FEM models, and their random locations were
assumed to conform to a uniform probability density distribution.
Define the defect fraction f as the ratio of the counts of missing/broken
bars in the defected structure over the total bar number of its corre-
sponding perfect structure. In the current work, our focus is on the early
stage of the lattices’ life cycle, for example, the fabrication process, and
hence the defect fraction f is limited up to 10 %. All the elements in a
defected bar will be killed and deactivated with the element birth and
death technique in Abaqus. Ten defect fractions for each lattice, from 1

(c) Simple Shear
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Fig. 2. FEM models for 2D lattice materials under uniaxial tensile or shear loadings: (a) Tension in x direction; (b) Tension in y direction; (c) Simple shear in the x-y
plane. Here the perfect hexagonal honeycomb lattice is demonstrated as an example.
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% to 10 % with an increment of 1 % in sequence, are considered here.
For each defect fraction of each lattice, ten random samples will be
generated and simulated, and statistical analyses will be conducted on
their results to obtain the mean values and variances of their effective
mechanical properties. The random distribution of missing-bar defects is
illustrated in Fig. 3 with nine samples that are randomly generated. In
the figure, the missing bars are marked as red, and one can see that the
missing bars’ distributions are roughly uniform.

For perfect status of these lattice structures, there are analytical so-
lutions available for their elastic properties [50-54] (see Appendix A for
details), and thus we can verify our FEM models by comparing our
simulation results to the theoretical solutions. Fig. 4 shows the com-
parison for DH as an example, and we can see that the FEM simulation
results are in very good agreement with the theoretical solutions.
Detailed comparisons for all the six lattices can be found in the Appendix
A, and well validate our FEM models. Noteworthy that in perfect state,
DH’s shear modulus Gs; (or Gi3), SREH’s tensile modulus Esy, and
DAH’s shear modulus Go; (or Gy2) are two to three orders of magnitude
larger than their counterparts. This is because the stretching deforma-
tion mode is predominant in these scenarios (see Supplementary Mate-
rial for the contours of internal forces and moments). The stretching-
dominant deformation is much smaller than the bending-dominant
deformation, and thus the lattice structures under the stretching-
dominant deformation mode are much stiffer [55]. It is also worth
noting that HH, FPSH, REH, and DAH in their perfect states demonstrate
the same elastic properties in the x and y directions.

3. Results and discussion
In this section, the mean value and variance of the effective me-

chanical properties of the six lattice structures are analyzed and dis-
cussed. The effective elastic moduli are all normalized by their
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respective counterparts of perfect structures to better compare the defect
effect among different moduli and different lattices.

Fig. 5 presents the mechanical properties varying with respect to the
defect fraction for typical PPR lattices, i.e., HH and DH. One can see
from Fig. 5a that the tensile moduli (E;; and Eg2) and shear moduli Go;
are all significantly diminished as the defect fraction f increases up to 10
%. It is worth noting that, for both DH and HH, the plots of tensile
moduli in the x and y directions are almost the same with each other,
indicating that the defect effects on the tensile modulus are independent
on the directions. The tensile and shear moduli of HH and the tensile
moduli of DH all decrease in a linear way, but the decease slope for HH’s
tensile moduli is largest, that for DH’s tensile moduli is smallest, and
that for HH’s shear modulus is between them. In particular, when the
defect fraction reaches 10 %, the HH’s tensile moduli are reduced by
about 63 %, the HH’s shear modulus is reduced by about 52 %, whereas
the DH’s tensile moduli are just by about 20 %. These indicate that the
tensile and shear moduli of HH are quite sensitive to the defects, while
the tensile moduli of DH are not so sensitive. In contrast, the shear
modulus of DH exponentially decreases with the increasing defect
fraction. Even just 1 % of defects are introduced, the DH shear modulus
significantly drops by about 48 %, and it becomes close to zero (i.e.,
completely loss of shear load resistance) when the defect fraction rea-
ches 10 %. This suggests that the DH shear property is extremely sen-
sitive to the defects. Noteworthy that the DH’s shear modulus is several
orders in magnitude higher than others (see Table 1 in Appendix A), but
the advantage seems not robust in the presence of imperfections. The
mechanism lies in its deformation mode transformation: DH under shear
loadings is stretching dominated in its perfect state and thus very stiff,
while the presence of bar-missing imperfections induces the conversion
of deformation mode from stretching-dominant to bending-dominant
and hence become softened significantly [53,55]. The defect-induced
deformation mode transformation can be evidenced by the contours of

£=5% F=10%

Fig. 3. Illustrations of the random distribution of missing-bar defects: Three defect fractions f = 1 %, 5 %, and 10 % are shown, respectively, for each representative
lattice: (a) Hexagonal honeycomb (HH), (b) Four-pointed star honeycomb (FPSH), and (c) Re-entrant honeycomb (REH). Note that the missing bars are randomly

distributed, conforming to a uniform probability density distribution.
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(b) DH-Poisson's ratio
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Fig. 4. Justification of our FEM models by comparing with the theoretical results: (a) the tensile moduli E1; and E»y, and the shear modulus Go;; (b) Poisson’s ratios

v12 and vy;. Here the diamond honeycomb (DH) is demonstrated as an example.
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Fig. 5. The mechanical properties varying with respect to the missing-bar fraction for typical PPR lattices: (a) Normalized moduli E11 /EY;,E22 /ES,, and Ga1/GY; by

their respective counterparts of perfect lattices; (b) Poisson’s ratios v15 and vs;.

internal forces and moments in Supplementary Material. Fig. 5b shows
the effective Poisson’s ratios of HH and DH varying with the defect
fraction. It can be seen that the plots for v and v15 of HH are completely
overlapped and gradually decrease from 1.0 with the perfect structure to
about 0.5 with the defect fraction of 10 %. For DH, v12 and vy; are
different from each other: for the perfect lattice, v5; has a value about
2.99 while v15 is about 0.33; as the defect fraction increases to 10 %, vo;
and v just have a little bit decrease, respectively, from 2.99 to 2.81 and
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from 0.33 to 0.32. Thus, it can be inferred that DH is less sensitive than
HH in Poisson’s ratios

The decreases of mechanical properties with respect to the increasing
defect fraction for typical ZPR lattices, i.e., SREH and FPSH, are plotted
in Fig. 6. The microstructural features evidently tell that the mechanical
properties of FPSH are the same in the x and y directions, while they are
different for SREH. The simulation results are in good agreement with
the predictions. As the defect fraction increases up to 10 %, E;1, Ezp and

Effective Poisson's ratio

051 SREH %

-0 - va SREH

=& - v
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—D— v
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Fig. 6. The mechanical properties varying with respect to the missing-bar fraction for typical ZPR lattices: (a) Normalized moduli E1 /E%;,E2 /ES,, and Ga1/GY; by

their respective counterparts of perfect lattices; (b) Poisson’s ratios vy, and v;.
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Go; of FPSH and Ej; and Go; of SREH gradually decrease in a linear
fashion. When the defect ratio f increases to 10 %, FPSH’s G2, is reduced
by about 24 % while its E;; and Es; is reduced by about 43 %. This
suggests that FPSH’s shear properties are more robust than its tensile
properties when microstructure imperfections are present. For SREH, its
Go; and Ej; are respectively reduced by about 46 % and 58 % when f
reaches 10 %, significantly larger than their counterparts of FPSH.
Moreover, SREH’s Esy is especially sensitive to the microstructure
imperfection, whose value drops by about 98 % even at a small per-
centage of defect fraction f = 1 %. With the defect fraction beyond 2 %,
SREH almost completely loses its capability to bear tensile loads in the y
direction. Thus, it can be inferred that SERH is generally more sensitive
to the imperfection than FPSH in terms of tensile and shear moduli.
Furthermore, the similar conclusion can be drawn about effective
Poisson’s ratios from Fig. 6b. We can see that as the defect fraction varies
from O to 10 %, the effective Poisson’s ratios of FPSH remain zero,
whereas for SREH vy, slightly deviates upward from zero and vo; de-
viates more than vy. It is worth mentioning that SREH’s Ep, that is most
fragile to imperfections. This is also owing to the imperfection-induced
conversion from stretching-dominated deformation mode to bending-
dominated deformation mode (see Supplementary Material), with
analogy to the case of DH’s Ga;.

Fig. 7 presents the plots of mechanical properties varying with
respect to the defect fraction for typical NPR lattices, i.e., REH and DAH.
One can observed that most of their mechanical indices decrease in
nonlinear way with respect to the increasing of defect fraction. Go; of
REH and E;; of DAH gradually decline with the defect fraction, and their
respective reductions are about 33 % and 40 % until the defect fraction
reaches 10 %. Eoy of DAH and E7; and Ej; of REH decline much faster,
and are reduced by 70 %, 78 %, and 79 %, respectively, when the defect
fraction gets up to 10 %. Go; of DAH decreases fastest and drops by more
than 95 % even just with 1 % of defects. The effective Poisson’s ratios are
seen significantly increasing from around -1.0 up to -0.1, as the defect
fraction increases to 10 %. It is worth noting that REH exhibits the same
varying trend in the mechanical properties along the x and y directions,
just as indicated by the analytical solutions for its perfect state [50,51].
In contrast, the mechanical properties along the x and y directions for
DAH become significantly different due to the presence of imperfections.
In addition, DAH’s Go; that is one of the best mechanical performances
shown in Table 1 in Appendix A owing to its stretching-dominant
deformation mode, is also most fragile to imperfections, with analogy
to DH’s Go; and SREH’s Ej; (see Supplementary Material).

HH, SREH, and REH have a close relationship in the microstructure.
SREH and REH can be regarded as variations of HH to achieve the
conversion from positive Poisson’s ratio to zero and negative Poisson’s
ratio, respectively. Thus, it is interesting to make an imperfection-
sensitivity comparison among them. Fig. 8a demonstrates the plots of
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tensile and shear moduli varying with respect to the defect fraction for
HH, SREH, and REH. Regarding the shear modulus Go;, HH’s curve
declines fastest, REH’s declines slowest, and SREH’s is sandwiched by
them. It suggests that the imperfection sensitivity of shear modulus
decreases from HH to SREH, and REH, in sequence. With respect to the
tensile modulus Ej;, the sequence of their imperfection sensitivity from
high to low is REH, HH, and SREH, different from that for the shear
modulus. However, the curves for HH and SREH are close to each other.
In terms of the tensile modulus Eos, the curve of HH declines slowest,
that of SREH declines fastest, and that of REH is between them. As
aforementioned, SREH’s E95 exhibits a quick drop as the defect fraction
increases from 0 to 1 %. Fig. 8b shows the plots of Poisson’s ratios
varying with respect to the defect fraction for HH, SREH, and REH. One
can see that the curves of v; and v, for each lattice structure are close
to each other. Interestingly, the positive Poisson’s ratios (HH) gradually
decrease, the negative Poisson’s ratios (REH) gradually increase, while
the zero Poisson’s ratios (SREH) keep around zero, as the defect fraction
increases up to 10 %. It can be inferred from the structural features that
the positive/negative Poisson’s ratio originates from the inward/out-
ward rotation of the inclined bars under tensile loadings. As the number
of missing bars increases, the inclined bars are reduced and so their
rotation effects will be reduced accordingly. When the defect fraction
reaches 10 %, HH and REH are still located in their own category, PPR
and NPR, respectively; however, SREH has been shifted out of the ZPR
zone. The special ranges or categories of Poisson’s ratios such ZPR and
NPR are crucially important to specific engineering applications of these
lattice materials, and hence much more attention should be paid to the
change of Poisson’s ratios with the presence of structural imperfections.

The results above tell that the missing-bar defects have effects of
different degree on the mechanical properties of these lattice materials.
To quantitatively measure and compare the imperfection sensitivity of
these lattices, the imperfection sensitivity coefficient at any specific
defect fraction is defined as below:

Y-,

Yo (6)

sy
where the subscript Y represents the effective properties such as E11, Eaa
and Gaj, while the superscript fraction is the defect fraction f. However,
it is a little complicated for Poisson’s ratios, especially considering the
ZPR lattices of great interest here. Thus, the imperfection sensitivity
coefficient for Poisson’s ratio is adapted to be:

Yo - Yy,

Yo - Y;
Yo ’

Y, € (—0.001,0.001);
s, = @)

otherwise

where Y represents vo; or v15. The adaptation can well avoid dividing by
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Fig. 7. The mechanical properties varying with respect to the missing-bar fraction for typical NPR lattices: (a) Normalized moduli E11 /E9;,E22 /ES,, and Ga1/GY; by

their respective counterparts of perfect lattices; (b) Poisson’s ratios vy, and v;.
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Fig. 8. Comparison among the three typical hexagonal variations: namely, hexagonal, semi-re-entrant, and re-entrant honeycomb: (a) Normalized moduli
E11/E3,; Ex2 /ES,, and Ga1/GY; by their respective counterparts of perfect lattices; (b) Poisson’s ratios v15 and va1.

zero in the ZPR scenario. It is noteworthy that there is still no specific
definition about the ZPR materials of practical interest in literature, and
here we limit the Poisson’s ratios of ZPR materials in the range between
-0.001 and 0.001, at least two orders of magnitude less than the common
values of conventional engineering materials (0.1~0.5). Generally
speaking, the imperfection sensitivity coefficients are defined as the
percentage of mechanical degradation of defected lattices with com-
parison to their perfect states, except that the absolute change in Pois-
son’s ratios is adopted for the ZPR lattices.

Fig. 9 summarizes the imperfect sensitivity coefficients of elastic
moduli for the six lattice structures with spider charts. Two typical
defect fractions 1 % and 10 % were adopted to represent the influence of
relatively small and large fractions, respectively. The detailed data are
also presented in Table A2 in Appendix B. Fig. 9a shows that S3°! for
SREH and S%°! for DAH are close to one, and S}°! for DH is about 49 %,
indicating that they are extremely sensitive to the missing-bar imper-
fection and even a small fraction of missing bars may lead to severe
deterioration in these terms of these lattices. Nonetheless, S3°* and S3.°!
just around 1.6 %, are the smallest among the coefficients in Fig. 9a,
reflecting that they are least sensitive to the imperfections. In another
word, they are most tolerant to the flaws. It is also worth noting that all
the imperfection sensitivity coefficients of FPSH (S22, 5391, and S3%') in
Fig. 9a are smaller than 4.6 %. This means FPSH has the best overall
flaw-tolerant capability in terms of the elastic moduli. Other

imperfection sensitivity coefficients are around 10 %, showing a
moderately sensitive to the imperfection when the defect fraction is
small. At the defect fraction f = 10 % (see Fig. 9b), all the imperfection
sensitivity coefficients go beyond 20 %, that evidently shows the unig-
norable mechanical deterioration due to the presence of large fraction of
missing bars. Especially, S);! for SREH, S%! for DH and DAH, S} and
S%1 for REH are all larger than 70 %, suggesting that their poor flaw-
tolerance at the relatively large defect fraction. Overall, FPSH still per-
forms best in the flaw-tolerant capability at the large defect fraction of
10 %.

As aforementioned, the imperfection-induced stretching-to-bending
conversion of deformation mode is mainly responsible for the extreme
imperfection sensitivity in E; of SREH, and G5 of DH and DAH. In
terms of microstructure feature, the imperfection sensitivity of a lattice
structure is closely related to its degree of nodal connectivity Z, i.e., the
number of bars attached to each node [45]. According to Maxwell’s
equation for the rigidity of lattice structures [56], the necessary but not
sufficient condition for rigidity of a two-dimensional lattice is Z>4.
Similar principles are also revealed for fiber networks [57]. For HH,
SREH, and REH, Z = 3 in their perfect states; due to their low nodal
connectivity, they are usually flexible and bending dominated in
deformation, except the special scenario of SREH subjected to tensile
loading in the y direction [53]. However, the stretching-dominated
mode of SREH is elegant and prone to break down once structural

(@) f=1% (b) f=10%
sty
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Fig. 9. Spider charts showing the missing-bar sensitivities of the six typical lattices: Missing-bar fraction of 1 % (a), and 1 % (b).
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imperfections come into effect. Thus, we can see that SREH’s Ey is
extremely sensitive to bar-missing defects. For DH and DAH, Z = 4, just
meeting the necessary condition. While most of them in perfect state are
bending-dominant, their perfect structures under shear loadings are
stretching-dominant and thus very stiff. For FPSH, Z = 8 at inter-star
nodes while Z = 2 at intra-star nodes. It is obvious that the inter-star
nodes are more important for loading transfer among stars. Neverthe-
less, the perfect FPSH is bending-dominant regardless of tensile or shear
loadings. For these bending-dominant structures and loading conditions
in their perfect states, there are no conversions from stretching-
dominant to bending-dominant deformation mode so that no abrupt
drops in the corresponding mechanical properties occur when bar-
missing imperfections come into effect. Furthermore, for the lattice
structures with larger Z, a small portion of bars missing have little effect
on the loading transfer mode and efficiency among nodes, and hence
they are imperfection insensitive when the imperfection fraction is very
small (e.g., less than 1 %). This can somehow explain why FPSH
generally performs best in imperfection insensitivity or flaw-tolerant
capability.

Fig. 10a shows the missing-bar sensitivity of Poisson’s ratios varying
with the defect fraction for PPR and NPR lattices, while Fig. 10b is for
the ZPR lattices. The detailed data for two typical defect fractions 1 %
and 10 % are also presented in Table A3 in Appendix B. For the PPR and
NPR lattices (see Fig. 10a), the imperfection sensitivity coefficients
gradually increase with the defect fraction. NPR’s curves are above those
of PPR lattices, suggesting that NPR lattices are more sensitive to the
bar-missing imperfections than PPR lattices. The imperfection sensi-
tivity decreases in the sequence: REH, DAH, HH, and DH. At the defect
fraction f = 1 %, their imperfection sensitivity coefficients are 0.1516,
0.0657, 0.0637, 0.0011 for v5; and 0.1833, 0.1468, 0.0605, 0.0011 for
v12 in sequence. At the defect fraction f = 10 %, their imperfection
sensitivity coefficients increase to be 0.8913, 0.6442, 0.4698, 0.0500 for
vp1 and 0.8968, 0.8196, 0.4847, 0.0509 for v15 in sequence, respectively.
For ZPR lattices (see Fig. 10b), FPSH is distinctly less sensitive to the
imperfection than SREH. FPSH always stays in the ZPR category (Pois-
son’s ratio<10°%) until the defect fraction reaches f = 5 %, beyond which
FPSH is still near the ZRP category (Poisson’s ratio<10?) up to 10 % of
defect fraction. In contrast, SREH has gone out of the ZPR category and
got Poisson’s ratios around 0.1, even when the defect fraction is as small
as f =1 %. It is interesting to mention that negative and zero Poisson’s
ratios are highly dependent on the elegant design of meta-structures, and
are prone to reverting to positive Poisson’s ratios, which are more nat-
ural in common materials. Moreover, ZPR and NPR are crucial for some
engineering applications under extreme conditions, and therefore spe-
cial attention must be paid to the change of Poisson’s ratios with the
presence of structural imperfections or damages.
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4. Conclusions

Centered around the question, which types of 2D lattice materials are
most/least sensitive to missing-bar defects, the present paper system-
atically investigated the effects of bar-missing/broken defects on the
elastic properties of six typical honeycomb structures—hexagonal hon-
eycomb (HH), diamond honeycomb (DH), semi-re-entrant honeycomb
(SREH), four-pointed star honeycomb (FPSH), re-entrant honeycomb
(REH), and double arrowhead honeycomb (DAH)— which are catego-
rized into positive, zero, and negative Poisson’s ratio groups (PPR, ZPR,
and NPR for briefness). A finite element model (FEM) incorporating the
random distributed defects is developed and the imperfection sensitivity
coefficient is defined to quantitatively analyze the sensitivity of key
elastic properties, including effective Young’s modulus, Poisson’s ratio,
and shear modulus, to missing bars. The major conclusions below are
drawn:

(1) 2D lattice materials that have low nodal connectivity (e.g.,
around 4) and are stretching-dominant (under specific loading
modes) in their perfect states are most sensitive to missing-bar
defects, since the presence of defects leads to the deformation
mode conversion of stretching-dominant to bending-dominant
and results in a sharp drop in the stiffness. DH’s G123, SREH’s
Ejp, and DAH’s Gy in the current study are just such cases.

(2) Conversely, 2D lattice materials that have high nodal connec-
tivity and are bending-dominant in their perfect states are most
insensitive to missing-bar defects, because there are no
imperfection-induced deformation mode conversion and a small
portion of bars missing have little effect on the loading transfer
mode and efficiency among nodes. FPSH in the current study is
just the case.

(3) Regardless of the types of 2D lattice materials, all the elastic
moduli are reduced significantly (more than 20 %) when the
defect fraction goes up to 10 %. It clearly indicates the unignor-
able mechanical deterioration due to the presence of large frac-
tion of missing bars.

(4) Missing-bar defects have sound effects on Poisson’s ratios of 2D
lattice materials, especially for NPR and ZPR types. Negative and
zero Poisson’s ratios are highly dependent on the elegant design
of meta-structures, and are prone to reverting to positive Pois-
son’s ratios once the meta-structures break down. This calls for
special caution for the engineering applications that utilize the
NPR and ZPR characteristics of 2D lattice materials.

This work shows the comparative advantages and disadvantages of
typical lattice materials (covering six types and three categories of
Poisson’s ratios) in the mechanical sensitivity to defects, and unveils the
principal mechanisms of their defect-sensitivity or flaw-tolerance in
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Fig. 10. Comparison of the missing-bar sensitivity of Poisson’s ratios among the six typical lattices: (a) PPR and NPR lattices; (b) ZPR lattices.
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relation to their structure features. These findings and conclusions may
serve as useful guidelines for the selection, optimization, fabrication
control, and safety evaluation of functional lattice materials. Never-
theless, it is worth noting that the current study only focused on the bar-
missing defects and the elastic properties. Some other forms of defects
such as dimensional deviation and surface roughness and more
complicate mechanical behaviors including fracture and crashworthi-
ness are also of high importance for the practical fabrication and
application of lattice materials. These issues are all great topics for
future studies in this field.
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Table Al shows the FEM results of elastic properties for the six types of lattice materials, along with the theoretical results for comparison purpose.
The details of the theoretical models can be found in Refs.[50-54]. For completeness and ease of reference, the formulae are listed below.

For HH [51]:
3 cosf
En =E f>7
" s<l (1 + sing)sin®0

cos?¢
(1 + sinf)sind

31 + sind
Ex =& (%) cos36

Uy =

(1 + sind)sing
cos26

V12 =

t) 31 + sind

G =E; (i 3cosf

For DH [53,54]:
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When the aspect ratio a = I/t is much larger than 1, the formulae are simplified to be:
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Gy = E; (;) cosfsing (A.15)

For SREH [53]:
Escost

E;n = A.16
T a(a? — (a2 — 1)cos?6) (A.16)
E;((a® — 1)cos?0 — a?)
Eoyy = Al7
2 (203 — 2a)cos®0 — 3a3cosd ¢ )
Uy =112=0 (A.18)
E;cos0(7a%cos?6 — cos?0 + 1
ot — i chs (7a cc;s cos3 +1) ] (A.19)
(21a% — 10a® + a)cos*d + (17a° — 2a)cos?0 + a
When the aspect ratio a = I/t is much larger than 1, the formulae above are simplified to be:
t\ 3 cosd
En =E, <1> g (A.20)
- <t> sin®0 (A.21)
27 5\ 3cost — 2co0s30 )
Vo1 =112 =0 (A.22)
e 1
Gy =E (=) —— A.23
2 s(l) 3cosd ( )
For FPSH [52]:
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When the aspect ratio a = I/t is much larger than 1, the formulae above are rewritten to be:
ne 1
Ejy = Ex =E; (i) s (A.27)
VUgy = V12 = 0 (A28)
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For REH [50,51]:
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-1
[ — A.36
v tan260tand ( )
3tan226cosf + tan?0cos26
Eyy = <f> A.
275\ 7 cos?0(tan20 — tand) (A.37)
V15 = —tan260tand (A.38)

Adopting I =1, t = 0.02 (correspondingly the aspect ratio a = I/t = 50), E; = 209GPa, v5; = 0.3 (v contributes little to the effective elastic modulus
here), and 0 = 30°, the formulae provide the theoretical results in Table Al.

In the formulae above, the moduli are proportional to <§>, usually indicating that they are high and correspond to the stretching-dominant

3
deformation mode; on the contrary, the moduli are proportional to (f) , usually suggesting that they are low and correspond to the bending-

dominant deformation mode. Then, we inferred that DH’s G3; and SREH’s Ey; are stretching-dominated mechanical properties and should be rela-
tively large. It is also noteworthy that the analytical solution for the effective shear moduli of DAH is not available in the literature. It’s anticipated that
the effective shear moduli of DAH should be relatively large, since DAH and DH have some similarity in geometric topology.

Table Al
The comparison between the numerical and analytical solution of the effective properties of six lattice structures.
Lattice Method E;1 (MPa) E»y (MPa) V12 a1 G12 (MPa) Go1 (MPa)
PPR HH FEM 3.785 3.763 1.000 0.996 0.944 0.952
- Theory 3.862 3.862 1.000 1.000 0.965 0.965
DH FEM 11.270 1.267 0.334 2.964 1765.21 1784.08
Theory 11.570 1.287 0.333 2.995 1809.99 1809.99
ZPR SREH FEM 5.632 794.409 2.628e-6 1.845e-8 0.617 0.621
Theory 5.785 805.085 0 0 0.643 0.643
FPSH FEM 6.506 6.576 1.427e-4 1.415e-4 0.272 0.275
Theory 6.680 6.680 0 0 0.279 0.279
NPR REH FEM 3.788 3.956 -1.024 -0.972 0.143 0.143
Theory 3.862 3.862 -1.000 -1.000 0.145 0.145
DAH FEM 5.910 6.153 -1.013 -0.971 573.05 579.23
Theory 6.164 6.164 -1.000 -1.000 NA NA
Appendix B. Tables for the imperfection sensitivity coefficients
Table A2
The imperfection sensitivity coefficients for different lattice materials when the imperfection fraction f = 1 %.
Latice 5 2 A 2 R
PPR HH 0.084 0.081 0.053 0.0637 0.0605
DH 0.016 0.016 0.491 0.0011 0.0011
ZPR SREH 0.072 0.982 0.023 2.709E-02 7.611E-02
FPSH 0.046 0.042 0.025 1.635E-04 1.651E-04
NPR REH 0.137 0.169 0.026 0.1516 0.1833
DAH 0.043 0.126 0.952 0.0657 0.1468
Table A3
The imperfection sensitivity coefficients for different lattice materials when the imperfection fraction f = 10 %.
Lattice sl syt sgL Soir i
PPR HH 0.622 0.633 0.521 0.4698 0.4847
DH 0.200 0.201 0.983 0.0500 0.0509
ZPR SREH 0.582 0.999 0.456 2.018E-01 7.650E-02
FPSH 0.425 0.429 0.242 3.281E-03 3.280E-03
NPR REH 0.782 0.793 0.314 0.8913 0.8968
DAH 0.401 0.696 0.997 0.6442 0.8196

Appendix C. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.compositesa.2025.109215.
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Data will be made available on request.
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