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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• Finite element models were established 
for various lattices with random- 
distributed missing/broken bars.

• The imperfection sensitivity coefficients 
were defined to measure and compare 
the imperfection sensitivity among 
different lattices.

• Deformation-mode conversion from 
stretching-dominant to bending- 
dominant leads to extremely high 
imperfection-sensitivity.

• Missing-bar defects have crucial effects 
on Poisson’s ratios of 2D lattice mate
rials, especially for the zero and nega
tive types.
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A B S T R A C T

Two-dimensional (2D) lattice materials with well-designed microstructures exhibit extraordinary properties such 
as zero and negative Poisson’s effects, and play a crucial role in industrial fields. However, inevitable defects 
from manufacturing, storage, transportation, and service may compromise their microstructures and function
alities. Therefore, it is important but still unclear: which microstructures and associated properties are most or 
least sensitive to defects. The current study investigated the effects of bar-missing/broken defects on the elastic 
properties of six typical honeycomb structures—Hexagonal Honeycomb, Diamond Honeycomb, Semi-Re-Entrant 
Honeycomb, Four-Pointed Star Honeycomb, Re-Entrant Honeycomb, and Double Arrowhead Honeycomb— 
which are categorized into positive, zero, and negative Poisson’s ratio groups. A finite element model incor
porating the random distributed defects was developed and the imperfection sensitivity coefficient was defined 
to quantitatively analyze the sensitivity of elastic properties to missing bars. The results show that the shear 
modulus of Double Arrowhead Honeycomb and Re-Entrant Honeycomb, and the vertical modulus of Semi-Re- 
Entrant Honeycomb are most sensitive to the defects, while Four-Pointed Star Honeycomb demonstrates the 
highest flaw tolerance overall. The underlying mechanisms for defect-sensitivity or flaw-tolerance are closely 
related to the deformation mode and nodal connectivity of these lattice structures.
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1. Introduction

Lattice materials are composed of interconnected bars. By carefully 
designing different permutations of these bars in regular and periodic 
arrangements, unique micro-lattice structures are created for specialized 
functions and applications [1,2]. These materials are valued for their 
lightweight nature and distinctive mechanical properties such as strong 
anisotropy and extraordinary Poisson’s effects [3,4], and have been 
widely used in highly demanding engineering environments where 
conventional materials fall short. Especially, the rapid development and 
commercialization of additive manufacturing (also well known as 3D 
printing) technologies has been facilitating the precise productions of 
lattice materials with more complex microstructures [1,5–7]. However, 
the elegant and complex microstructure design is usually a double-edged 
sword: it helps achieve extraordinary properties while reducing 
robustness and reliability. It is well-known that defects/flaws are inev
itable, always accompanying materials/structures throughout their 
whole life cycle—from manufacturing, to storage, transportation, and 
application. Thus, important questions arise: How do microstructure 
flaws affect the mechanical properties of typical lattice materials? 
Which type of lattice materials and what properties of theirs are most/ 
least sensitive to the flaws? How can we make a quick evaluation on the 
flaw-sensitivity (or flaw-tolerance) of a lattice design? All these ques
tions are yet to be answered and ask for more systematic and compre
hensive research.

Poisson’s ratio is an important elastic parameter measuring the ratio 
of lateral strain to axial strain when a material is uniaxially stretched or 
compressed. It plays an important role in determining the material’s 
deformation characteristics, stability, and strength. Although its theo
retical value ranges from -1 to 0.5, Poisson’s ratio of common engi
neering materials is between 0.1 and 0.5 [8]. However, through 
microstructure designs in lattice materials, their Poisson’s ratios can be 
engineered beyond the common range of conventional materials, and 
then the extraordinary properties, functions and applications follow as a 
result. As illustrated in Fig. 1, six typical two-dimensional (2D) lattice 
materials are categorized into three groups according to their Poisson’s 
ratios: positive, zero, and negative Poisson’s ratios, referred to be PPR, 
ZPR, and NPR for briefness, respectively. All their periodic unit cell can 
be determined by three geometric parameters—the bar length l, the bar 
thickness t, and the tilted angle θ. Hexagonal honeycomb (HH) and 

diamond honeycomb (DH), as two typical PPR lattice materials, are 
widely utilized as sandwich core materials in engineering due to their 
excellent impact resistance and energy absorption capacity [9], such as 
in the application of fiber reinforced composite honeycomb 
[5–7,10–14], self-locking structural honeycomb [15], self-folding hon
eycomb [16] and some hierarchical honeycombs [11,17,18]. ZPR lattice 
materials including the semi-re-entrant honeycomb (SREH) and four- 
pointed star honeycomb (FPSH) have numerous applications in aero
space [19–24] and tissue engineering [25–28], in which the material 
deformation in one direction is desired to be unaffected by the other 
direction. The re-entrant honeycomb (REH) and double arrowhead 
honeycomb (DAH) are taken as two typical NPR structures, and have 
great applications in biomedical engineering, e.g., stents [29–31], car
diac patches [32], wearable device [33,34], bone implant [35–37], since 
they can provide better compliance to complex surfaces and movements 
of human organs.

Many studies on the mechanical advantages and applications of these 
lattice materials can be found in the literature, but few give sufficient 
attention to their defects. Regarding the defect issue, Gibson, Fleck, and 
their respective coworkers published several pioneering works in 1990s 
[39–43]. For example, Gibson and his coworkers investigated the effects 
of random missing cell walls, cell face curvature, and cell wall corru
gations on the mechanical properties of HHs through FEM simulations, 
and found that the defect existence caused a sharp decrease in the 
effective mechanical properties [39–42]. Chen et al. (1999) systemati
cally studied the influence of six types of morphological imperfec
tions—waviness, non-uniform cell wall thickness, cell-size variations, 
fractured cell walls, cell-wall misalignments, and missing cells—on the 
yielding of HHs by FEM analyses, and concluded that these defects may 
have knock-down effect on the hydrostatic yield strength due to the 
defect-induced switch in deformation mode from cell wall stretching to 
cell wall bending [43]. Followingly, there are an increasing number of 
studies conducted to probe into more details and more aspects on the 
topic. Li et al. (2005) conducted a research on the effective Young’s 
modulus and Poisson’s ratios of HHs with the defects including Voronoi 
irregular structures and non-uniform cell walls, and they suggested that 
the effective Young’s modulus is significantly affected by these defects 
but the Poisson’s ratio is not [44]. Symons and Fleck (2008) systemat
ically investigated the effects of missing bars, misplaced nodes, and 
wavy cell walls on the effective shear moduli and bulk moduli of HHs, 

Fig. 1. Typical 2D lattice materials are grouped by their Poisson’s ratios: Positive Poisson’s ratios (PPR), Zero Poisson’s ratios (ZPR), Negative Poisson’s ratios (NPR); 
their major applications are also listed, respectively. (Note: the subpicture on the “stent” is adapted from Ref [38].)
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and found that the defects distinctly compromised their bulk moduli but 
had little effects on their shear moduli [45]. Zhang et al. (2010) analyzed 
the impact resistance of a metal hexagonal honeycomb with missing cell 
walls [46]. However, most of these studies focused on the lattice ma
terials of HHs. Romijn and Fleck investigated the imperfection sensi
tivity of in-plane modulus and fracture toughness for five morphologies 
of 2D lattice: the isotropic triangular honeycombs, HHs, Kagome lat
tices, 0/90◦ squares, and ±45◦ squares, but their assume imperfection is 
in form of displaced nodes [47]. Tankasala et al. (2017) studied the 
finite-strain uniaxial tensile response of 2D elastoplastic lattices 
including triangular, Kagome, DH, and HH, and the sensitivity of 
macroscopic ductility and tensile strength to geometric imperfection is 
also explored by considering the randomly misplaced joints and an array 
of broken cell walls [48]. Liu et al. (2014) studied the effect of irregu
larity, residual convex units and stresses on the effective mechanical 
properties of REH using FEM simulations, and found that the these de
fects have significant influence on the effective elastic moduli, yield 
strength, shear moduli, and Poisson’s ratio of REH [49]. In summary, 
most of the existing defect-sensitivity studies mainly focused on HH, 
insufficient attentions have been paid to other typical lattice structures 
of PPR, ZPR, and NPR. Moreover, these studies have yet to systemati
cally address the central question we raised here: Which types of lattice 
materials and what properties of theirs are most/least sensitive to the 
flaws?

To well address the questions above, the current work systematically 
conducted FEM simulations to study the influences of random located 
missing/broken bars on the elastic properties of six lattice structures: 
HH, DH, SREH, FPSH, REH, and DAH, fully covering three major groups: 
PPR, ZPR, and NPR. The remaining of the paper is arranged in the 
following way: the FEM models with the random missing bars are 
established in Section 2; the results and discussions are presented in 
Section 3; and, Section 4 gives a summary of the major conclusions.

2. FEM model and verification

FEM simulations were conducted using the widely used commercial 
software Abaqus (Version 2016). The geometrical models and boundary 
conditions are illustrated in Fig. 2, with examples of perfect HH sub
jected to the uniaxial tensile loads along the x and y directions, and the 
simple shear load in the x-y plane. In the models, a sufficient number of 
periodic cells are needed to avoid the dispersion of simulation results 
due to the size or boundary effects, and our trial tests show that 70 
periodic cells in each dimension are generally enough, as a result, 70×70 
= 4900 cells in total. The geometrical parameters in FEM models are all 
set to be dimensionless and thus the effective moduli acquired from our 
simulation results are consistent with the Young’s moduli of the solid 
material. All the bars are slender with a square cross-section, the length l 
= 1 (unit length), cross-section edge t = 0.02, correspondingly the aspect 
ratio α = l/t = 50. All the tilted angle θ = 30◦. The bars are assumed to be 

rigid-jointed. A 3-node quadratic beam element B32 is adopted for the 
bars. Mesh converge analysis had been performed to ensure the simu
lation results to be consistent and reliable before starting systematic 
simulations, and the element size around 0.05 was finally adopted. All 
the material parameters of the models are set as those of stainless steel, i. 
e. Es = 209GPa and νs = 0.3. From the FEM simulations, five effective 
elastic properties can be obtained, specifically, the tensile moduli E11 
and E22, the Poisson’s ratios ν12 and ν21, and the shear modulus G21, 
where subscripts 1 and 2 represent the x and y directions, respectively. 
In particular, the specific formulae are as follows: 

E11 =
σ11

ε11
=

Fx/2rLy

Δx/Lx
(1) 

ν21 = −
ε22

ε11
= −

Δyx
/
Ly

Δx/Lx
(2) 

E22 =
σ22

ε22
=

Fy/2rLx

Δy/Ly
(3) 

ν12 = −
ε11

ε22
= −

Δxy/Lx

Δy/Ly
(4) 

G21 =
σ21

2ε21
=

Fx/2rLx

Δx
/
Ly

(5) 

Here Lx and Ly denote the sample dimensions along the x and y di
rections, respectively; Δx represents the uniaxial stretch along the x 
direction, while Δyx is the accompanying contraction/expansion in the y 
direction due to the Poisson’s effect; similarly, Δy and Δxy denote the 
uniaxial stretch along the y direction and the accompanying contrac
tion/expansion in the x direction, respectively. Fx and Fy refer to the 
resultant reaction forces at the constrained boundaries. σαβ and εαβ are 
stress and strain components in the plane, with the subscripts α, β =

1, 2. Note that G12 can also be calculated with analogy to Eq. (5) and 
G12  = G21 according to the theory of elasticity.

As mentioned in the previous section, random defects, such as bar 
missing during the fabrication process or bar broken in the serving stage, 
are usually inevitable in the whole life cycle of the lattice structures. To 
this end, randomly distributed defects in forms of missing/broken bars 
were introduced to the FEM models, and their random locations were 
assumed to conform to a uniform probability density distribution. 
Define the defect fraction f as the ratio of the counts of missing/broken 
bars in the defected structure over the total bar number of its corre
sponding perfect structure. In the current work, our focus is on the early 
stage of the lattices’ life cycle, for example, the fabrication process, and 
hence the defect fraction f is limited up to 10 %. All the elements in a 
defected bar will be killed and deactivated with the element birth and 
death technique in Abaqus. Ten defect fractions for each lattice, from 1 

Fig. 2. FEM models for 2D lattice materials under uniaxial tensile or shear loadings: (a) Tension in x direction; (b) Tension in y direction; (c) Simple shear in the x-y 
plane. Here the perfect hexagonal honeycomb lattice is demonstrated as an example.
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% to 10 % with an increment of 1 % in sequence, are considered here. 
For each defect fraction of each lattice, ten random samples will be 
generated and simulated, and statistical analyses will be conducted on 
their results to obtain the mean values and variances of their effective 
mechanical properties. The random distribution of missing-bar defects is 
illustrated in Fig. 3 with nine samples that are randomly generated. In 
the figure, the missing bars are marked as red, and one can see that the 
missing bars’ distributions are roughly uniform.

For perfect status of these lattice structures, there are analytical so
lutions available for their elastic properties [50–54] (see Appendix A for 
details), and thus we can verify our FEM models by comparing our 
simulation results to the theoretical solutions. Fig. 4 shows the com
parison for DH as an example, and we can see that the FEM simulation 
results are in very good agreement with the theoretical solutions. 
Detailed comparisons for all the six lattices can be found in the Appendix 
A, and well validate our FEM models. Noteworthy that in perfect state, 
DH’s shear modulus G21 (or G12), SREH’s tensile modulus E22, and 
DAH’s shear modulus G21 (or G12) are two to three orders of magnitude 
larger than their counterparts. This is because the stretching deforma
tion mode is predominant in these scenarios (see Supplementary Mate
rial for the contours of internal forces and moments). The stretching- 
dominant deformation is much smaller than the bending-dominant 
deformation, and thus the lattice structures under the stretching- 
dominant deformation mode are much stiffer [55]. It is also worth 
noting that HH, FPSH, REH, and DAH in their perfect states demonstrate 
the same elastic properties in the x and y directions.

3. Results and discussion

In this section, the mean value and variance of the effective me
chanical properties of the six lattice structures are analyzed and dis
cussed. The effective elastic moduli are all normalized by their 

respective counterparts of perfect structures to better compare the defect 
effect among different moduli and different lattices.

Fig. 5 presents the mechanical properties varying with respect to the 
defect fraction for typical PPR lattices, i.e., HH and DH. One can see 
from Fig. 5a that the tensile moduli (E11 and E22) and shear moduli G21 
are all significantly diminished as the defect fraction f increases up to 10 
%. It is worth noting that, for both DH and HH, the plots of tensile 
moduli in the x and y directions are almost the same with each other, 
indicating that the defect effects on the tensile modulus are independent 
on the directions. The tensile and shear moduli of HH and the tensile 
moduli of DH all decrease in a linear way, but the decease slope for HH’s 
tensile moduli is largest, that for DH’s tensile moduli is smallest, and 
that for HH’s shear modulus is between them. In particular, when the 
defect fraction reaches 10 %, the HH’s tensile moduli are reduced by 
about 63 %, the HH’s shear modulus is reduced by about 52 %, whereas 
the DH’s tensile moduli are just by about 20 %. These indicate that the 
tensile and shear moduli of HH are quite sensitive to the defects, while 
the tensile moduli of DH are not so sensitive. In contrast, the shear 
modulus of DH exponentially decreases with the increasing defect 
fraction. Even just 1 % of defects are introduced, the DH shear modulus 
significantly drops by about 48 %, and it becomes close to zero (i.e., 
completely loss of shear load resistance) when the defect fraction rea
ches 10 %. This suggests that the DH shear property is extremely sen
sitive to the defects. Noteworthy that the DH’s shear modulus is several 
orders in magnitude higher than others (see Table 1 in Appendix A), but 
the advantage seems not robust in the presence of imperfections. The 
mechanism lies in its deformation mode transformation: DH under shear 
loadings is stretching dominated in its perfect state and thus very stiff, 
while the presence of bar-missing imperfections induces the conversion 
of deformation mode from stretching-dominant to bending-dominant 
and hence become softened significantly [53,55]. The defect-induced 
deformation mode transformation can be evidenced by the contours of 

Fig. 3. Illustrations of the random distribution of missing-bar defects: Three defect fractions f = 1 %, 5 %, and 10 % are shown, respectively, for each representative 
lattice: (a) Hexagonal honeycomb (HH), (b) Four-pointed star honeycomb (FPSH), and (c) Re-entrant honeycomb (REH). Note that the missing bars are randomly 
distributed, conforming to a uniform probability density distribution.
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internal forces and moments in Supplementary Material. Fig. 5b shows 
the effective Poisson’s ratios of HH and DH varying with the defect 
fraction. It can be seen that the plots for ν21 and ν12 of HH are completely 
overlapped and gradually decrease from 1.0 with the perfect structure to 
about 0.5 with the defect fraction of 10 %. For DH, ν12 and ν21 are 
different from each other: for the perfect lattice, ν21 has a value about 
2.99 while ν12 is about 0.33; as the defect fraction increases to 10 %, ν21 
and ν12 just have a little bit decrease, respectively, from 2.99 to 2.81 and 

from 0.33 to 0.32. Thus, it can be inferred that DH is less sensitive than 
HH in Poisson’s ratios

The decreases of mechanical properties with respect to the increasing 
defect fraction for typical ZPR lattices, i.e., SREH and FPSH, are plotted 
in Fig. 6. The microstructural features evidently tell that the mechanical 
properties of FPSH are the same in the x and y directions, while they are 
different for SREH. The simulation results are in good agreement with 
the predictions. As the defect fraction increases up to 10 %, E11, E22 and 

Fig. 4. Justification of our FEM models by comparing with the theoretical results: (a) the tensile moduli E11 and E22, and the shear modulus G21; (b) Poisson’s ratios 
ν12 and ν21. Here the diamond honeycomb (DH) is demonstrated as an example.

Fig. 5. The mechanical properties varying with respect to the missing-bar fraction for typical PPR lattices: (a) Normalized moduli E11/E0
11,E22/E0

22, and G21/G0
21 by 

their respective counterparts of perfect lattices; (b) Poisson’s ratios ν12 and ν21.

Fig. 6. The mechanical properties varying with respect to the missing-bar fraction for typical ZPR lattices: (a) Normalized moduli E11/E0
11,E22/E0

22, and G21/G0
21 by 

their respective counterparts of perfect lattices; (b) Poisson’s ratios ν12 and ν21.
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G21 of FPSH and E11 and G21 of SREH gradually decrease in a linear 
fashion. When the defect ratio f increases to 10 %, FPSH’s G21 is reduced 
by about 24 % while its E11 and E22 is reduced by about 43 %. This 
suggests that FPSH’s shear properties are more robust than its tensile 
properties when microstructure imperfections are present. For SREH, its 
G21 and E11 are respectively reduced by about 46 % and 58 % when f 
reaches 10 %, significantly larger than their counterparts of FPSH. 
Moreover, SREH’s E22 is especially sensitive to the microstructure 
imperfection, whose value drops by about 98 % even at a small per
centage of defect fraction f = 1 %. With the defect fraction beyond 2 %, 
SREH almost completely loses its capability to bear tensile loads in the y 
direction. Thus, it can be inferred that SERH is generally more sensitive 
to the imperfection than FPSH in terms of tensile and shear moduli. 
Furthermore, the similar conclusion can be drawn about effective 
Poisson’s ratios from Fig. 6b. We can see that as the defect fraction varies 
from 0 to 10 %, the effective Poisson’s ratios of FPSH remain zero, 
whereas for SREH ν12 slightly deviates upward from zero and ν21 de
viates more than ν12. It is worth mentioning that SREH’s E22 that is most 
fragile to imperfections. This is also owing to the imperfection-induced 
conversion from stretching-dominated deformation mode to bending- 
dominated deformation mode (see Supplementary Material), with 
analogy to the case of DH’s G21.

Fig. 7 presents the plots of mechanical properties varying with 
respect to the defect fraction for typical NPR lattices, i.e., REH and DAH. 
One can observed that most of their mechanical indices decrease in 
nonlinear way with respect to the increasing of defect fraction. G21 of 
REH and E11 of DAH gradually decline with the defect fraction, and their 
respective reductions are about 33 % and 40 % until the defect fraction 
reaches 10 %. E22 of DAH and E11 and E22 of REH decline much faster, 
and are reduced by 70 %, 78 %, and 79 %, respectively, when the defect 
fraction gets up to 10 %. G21 of DAH decreases fastest and drops by more 
than 95 % even just with 1 % of defects. The effective Poisson’s ratios are 
seen significantly increasing from around -1.0 up to -0.1, as the defect 
fraction increases to 10 %. It is worth noting that REH exhibits the same 
varying trend in the mechanical properties along the x and y directions, 
just as indicated by the analytical solutions for its perfect state [50,51]. 
In contrast, the mechanical properties along the x and y directions for 
DAH become significantly different due to the presence of imperfections. 
In addition, DAH’s G21 that is one of the best mechanical performances 
shown in Table 1 in Appendix A owing to its stretching-dominant 
deformation mode, is also most fragile to imperfections, with analogy 
to DH’s G21 and SREH’s E22 (see Supplementary Material).

HH, SREH, and REH have a close relationship in the microstructure. 
SREH and REH can be regarded as variations of HH to achieve the 
conversion from positive Poisson’s ratio to zero and negative Poisson’s 
ratio, respectively. Thus, it is interesting to make an imperfection- 
sensitivity comparison among them. Fig. 8a demonstrates the plots of 

tensile and shear moduli varying with respect to the defect fraction for 
HH, SREH, and REH. Regarding the shear modulus G21, HH’s curve 
declines fastest, REH’s declines slowest, and SREH’s is sandwiched by 
them. It suggests that the imperfection sensitivity of shear modulus 
decreases from HH to SREH, and REH, in sequence. With respect to the 
tensile modulus E11, the sequence of their imperfection sensitivity from 
high to low is REH, HH, and SREH, different from that for the shear 
modulus. However, the curves for HH and SREH are close to each other. 
In terms of the tensile modulus E22, the curve of HH declines slowest, 
that of SREH declines fastest, and that of REH is between them. As 
aforementioned, SREH’s E22 exhibits a quick drop as the defect fraction 
increases from 0 to 1 %. Fig. 8b shows the plots of Poisson’s ratios 
varying with respect to the defect fraction for HH, SREH, and REH. One 
can see that the curves of ν21 and ν12 for each lattice structure are close 
to each other. Interestingly, the positive Poisson’s ratios (HH) gradually 
decrease, the negative Poisson’s ratios (REH) gradually increase, while 
the zero Poisson’s ratios (SREH) keep around zero, as the defect fraction 
increases up to 10 %. It can be inferred from the structural features that 
the positive/negative Poisson’s ratio originates from the inward/out
ward rotation of the inclined bars under tensile loadings. As the number 
of missing bars increases, the inclined bars are reduced and so their 
rotation effects will be reduced accordingly. When the defect fraction 
reaches 10 %, HH and REH are still located in their own category, PPR 
and NPR, respectively; however, SREH has been shifted out of the ZPR 
zone. The special ranges or categories of Poisson’s ratios such ZPR and 
NPR are crucially important to specific engineering applications of these 
lattice materials, and hence much more attention should be paid to the 
change of Poisson’s ratios with the presence of structural imperfections.

The results above tell that the missing-bar defects have effects of 
different degree on the mechanical properties of these lattice materials. 
To quantitatively measure and compare the imperfection sensitivity of 
these lattices, the imperfection sensitivity coefficient at any specific 
defect fraction is defined as below: 

Sf
Y =

Y0 − Yf

Y0
(6) 

where the subscript Y represents the effective properties such as E11, E22 
and G21, while the superscript fraction is the defect fraction f. However, 
it is a little complicated for Poisson’s ratios, especially considering the 
ZPR lattices of great interest here. Thus, the imperfection sensitivity 
coefficient for Poisson’s ratio is adapted to be: 

Sf
Y =

⎧
⎪⎨

⎪⎩

⃒
⃒Y0 − Yf

⃒
⃒, Y0 ∈ ( − 0.001,0.001);

⃒
⃒
⃒
⃒
Y0 − Yf

Y0

⃒
⃒
⃒
⃒ , otherwise

(7) 

where Y represents ν21 or ν12. The adaptation can well avoid dividing by 

Fig. 7. The mechanical properties varying with respect to the missing-bar fraction for typical NPR lattices: (a) Normalized moduli E11/E0
11,E22/E0

22, and G21/G0
21 by 

their respective counterparts of perfect lattices; (b) Poisson’s ratios ν12 and ν21.
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zero in the ZPR scenario. It is noteworthy that there is still no specific 
definition about the ZPR materials of practical interest in literature, and 
here we limit the Poisson’s ratios of ZPR materials in the range between 
-0.001 and 0.001, at least two orders of magnitude less than the common 
values of conventional engineering materials (0.1~0.5). Generally 
speaking, the imperfection sensitivity coefficients are defined as the 
percentage of mechanical degradation of defected lattices with com
parison to their perfect states, except that the absolute change in Pois
son’s ratios is adopted for the ZPR lattices.

Fig. 9 summarizes the imperfect sensitivity coefficients of elastic 
moduli for the six lattice structures with spider charts. Two typical 
defect fractions 1 % and 10 % were adopted to represent the influence of 
relatively small and large fractions, respectively. The detailed data are 
also presented in Table A2 in Appendix B. Fig. 9a shows that S0.01

E22 
for 

SREH and S0.01
G21 

for DAH are close to one, and S0.01
G21 

for DH is about 49 %, 
indicating that they are extremely sensitive to the missing-bar imper
fection and even a small fraction of missing bars may lead to severe 
deterioration in these terms of these lattices. Nonetheless, S0.01

E11 
and S0.01

E22 

just around 1.6 %, are the smallest among the coefficients in Fig. 9a, 
reflecting that they are least sensitive to the imperfections. In another 
word, they are most tolerant to the flaws. It is also worth noting that all 
the imperfection sensitivity coefficients of FPSH (S0.01

E11
, S0.01

E22
, and S0.01

G21
) in 

Fig. 9a are smaller than 4.6 %. This means FPSH has the best overall 
flaw-tolerant capability in terms of the elastic moduli. Other 

imperfection sensitivity coefficients are around 10 %, showing a 
moderately sensitive to the imperfection when the defect fraction is 
small. At the defect fraction f = 10 % (see Fig. 9b), all the imperfection 
sensitivity coefficients go beyond 20 %, that evidently shows the unig
norable mechanical deterioration due to the presence of large fraction of 
missing bars. Especially, S0.1

E22 
for SREH, S0.1

G21 
for DH and DAH, S0.1

E11 
and 

S0.1
E22 

for REH are all larger than 70 %, suggesting that their poor flaw- 
tolerance at the relatively large defect fraction. Overall, FPSH still per
forms best in the flaw-tolerant capability at the large defect fraction of 
10 %.

As aforementioned, the imperfection-induced stretching-to-bending 
conversion of deformation mode is mainly responsible for the extreme 
imperfection sensitivity in E22 of SREH, and G12 of DH and DAH. In 
terms of microstructure feature, the imperfection sensitivity of a lattice 
structure is closely related to its degree of nodal connectivity Z, i.e., the 
number of bars attached to each node [45]. According to Maxwell’s 
equation for the rigidity of lattice structures [56], the necessary but not 
sufficient condition for rigidity of a two-dimensional lattice is Z≥4. 
Similar principles are also revealed for fiber networks [57]. For HH, 
SREH, and REH, Z = 3 in their perfect states; due to their low nodal 
connectivity, they are usually flexible and bending dominated in 
deformation, except the special scenario of SREH subjected to tensile 
loading in the y direction [53]. However, the stretching-dominated 
mode of SREH is elegant and prone to break down once structural 

Fig. 8. Comparison among the three typical hexagonal variations: namely, hexagonal, semi-re-entrant, and re-entrant honeycomb: (a) Normalized moduli 
E11/E0

11,E22/E0
22, and G21/G0

21 by their respective counterparts of perfect lattices; (b) Poisson’s ratios ν12 and ν21.

Fig. 9. Spider charts showing the missing-bar sensitivities of the six typical lattices: Missing-bar fraction of 1 % (a), and 1 % (b).
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imperfections come into effect. Thus, we can see that SREH’s E22 is 
extremely sensitive to bar-missing defects. For DH and DAH, Z = 4, just 
meeting the necessary condition. While most of them in perfect state are 
bending-dominant, their perfect structures under shear loadings are 
stretching-dominant and thus very stiff. For FPSH, Z = 8 at inter-star 
nodes while Z = 2 at intra-star nodes. It is obvious that the inter-star 
nodes are more important for loading transfer among stars. Neverthe
less, the perfect FPSH is bending-dominant regardless of tensile or shear 
loadings. For these bending-dominant structures and loading conditions 
in their perfect states, there are no conversions from stretching- 
dominant to bending-dominant deformation mode so that no abrupt 
drops in the corresponding mechanical properties occur when bar- 
missing imperfections come into effect. Furthermore, for the lattice 
structures with larger Z, a small portion of bars missing have little effect 
on the loading transfer mode and efficiency among nodes, and hence 
they are imperfection insensitive when the imperfection fraction is very 
small (e.g., less than 1 %). This can somehow explain why FPSH 
generally performs best in imperfection insensitivity or flaw-tolerant 
capability.

Fig. 10a shows the missing-bar sensitivity of Poisson’s ratios varying 
with the defect fraction for PPR and NPR lattices, while Fig. 10b is for 
the ZPR lattices. The detailed data for two typical defect fractions 1 % 
and 10 % are also presented in Table A3 in Appendix B. For the PPR and 
NPR lattices (see Fig. 10a), the imperfection sensitivity coefficients 
gradually increase with the defect fraction. NPR’s curves are above those 
of PPR lattices, suggesting that NPR lattices are more sensitive to the 
bar-missing imperfections than PPR lattices. The imperfection sensi
tivity decreases in the sequence: REH, DAH, HH, and DH. At the defect 
fraction f = 1 %, their imperfection sensitivity coefficients are 0.1516, 
0.0657, 0.0637, 0.0011 for ν21 and 0.1833, 0.1468, 0.0605, 0.0011 for 
ν12 in sequence. At the defect fraction f = 10 %, their imperfection 
sensitivity coefficients increase to be 0.8913, 0.6442, 0.4698, 0.0500 for 
ν21 and 0.8968, 0.8196, 0.4847, 0.0509 for ν12 in sequence, respectively. 
For ZPR lattices (see Fig. 10b), FPSH is distinctly less sensitive to the 
imperfection than SREH. FPSH always stays in the ZPR category (Pois
son’s ratio≤10-3) until the defect fraction reaches f = 5 %, beyond which 
FPSH is still near the ZRP category (Poisson’s ratio≤10-2) up to 10 % of 
defect fraction. In contrast, SREH has gone out of the ZPR category and 
got Poisson’s ratios around 0.1, even when the defect fraction is as small 
as f = 1 %. It is interesting to mention that negative and zero Poisson’s 
ratios are highly dependent on the elegant design of meta-structures, and 
are prone to reverting to positive Poisson’s ratios, which are more nat
ural in common materials. Moreover, ZPR and NPR are crucial for some 
engineering applications under extreme conditions, and therefore spe
cial attention must be paid to the change of Poisson’s ratios with the 
presence of structural imperfections or damages.

4. Conclusions

Centered around the question, which types of 2D lattice materials are 
most/least sensitive to missing-bar defects, the present paper system
atically investigated the effects of bar-missing/broken defects on the 
elastic properties of six typical honeycomb structures—hexagonal hon
eycomb (HH), diamond honeycomb (DH), semi-re-entrant honeycomb 
(SREH), four-pointed star honeycomb (FPSH), re-entrant honeycomb 
(REH), and double arrowhead honeycomb (DAH)— which are catego
rized into positive, zero, and negative Poisson’s ratio groups (PPR, ZPR, 
and NPR for briefness). A finite element model (FEM) incorporating the 
random distributed defects is developed and the imperfection sensitivity 
coefficient is defined to quantitatively analyze the sensitivity of key 
elastic properties, including effective Young’s modulus, Poisson’s ratio, 
and shear modulus, to missing bars. The major conclusions below are 
drawn: 

(1) 2D lattice materials that have low nodal connectivity (e.g., 
around 4) and are stretching-dominant (under specific loading 
modes) in their perfect states are most sensitive to missing-bar 
defects, since the presence of defects leads to the deformation 
mode conversion of stretching-dominant to bending-dominant 
and results in a sharp drop in the stiffness. DH’s G12, SREH’s 
E22, and DAH’s G12 in the current study are just such cases.

(2) Conversely, 2D lattice materials that have high nodal connec
tivity and are bending-dominant in their perfect states are most 
insensitive to missing-bar defects, because there are no 
imperfection-induced deformation mode conversion and a small 
portion of bars missing have little effect on the loading transfer 
mode and efficiency among nodes. FPSH in the current study is 
just the case.

(3) Regardless of the types of 2D lattice materials, all the elastic 
moduli are reduced significantly (more than 20 %) when the 
defect fraction goes up to 10 %. It clearly indicates the unignor
able mechanical deterioration due to the presence of large frac
tion of missing bars.

(4) Missing-bar defects have sound effects on Poisson’s ratios of 2D 
lattice materials, especially for NPR and ZPR types. Negative and 
zero Poisson’s ratios are highly dependent on the elegant design 
of meta-structures, and are prone to reverting to positive Pois
son’s ratios once the meta-structures break down. This calls for 
special caution for the engineering applications that utilize the 
NPR and ZPR characteristics of 2D lattice materials.

This work shows the comparative advantages and disadvantages of 
typical lattice materials (covering six types and three categories of 
Poisson’s ratios) in the mechanical sensitivity to defects, and unveils the 
principal mechanisms of their defect-sensitivity or flaw-tolerance in 

Fig. 10. Comparison of the missing-bar sensitivity of Poisson’s ratios among the six typical lattices: (a) PPR and NPR lattices; (b) ZPR lattices.
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relation to their structure features. These findings and conclusions may 
serve as useful guidelines for the selection, optimization, fabrication 
control, and safety evaluation of functional lattice materials. Never
theless, it is worth noting that the current study only focused on the bar- 
missing defects and the elastic properties. Some other forms of defects 
such as dimensional deviation and surface roughness and more 
complicate mechanical behaviors including fracture and crashworthi
ness are also of high importance for the practical fabrication and 
application of lattice materials. These issues are all great topics for 
future studies in this field.
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Appendix A. Verification of FEM model

Table A1 shows the FEM results of elastic properties for the six types of lattice materials, along with the theoretical results for comparison purpose. 
The details of the theoretical models can be found in Refs.[50–54]. For completeness and ease of reference, the formulae are listed below.

For HH [51]: 

E11 = Es

(t
l

)3 cosθ
(1 + sinθ)sin2θ

(A.1) 

ν21 =
cos2θ

(1 + sinθ)sinθ
(A.2) 

E22 = Es

(t
l

)31 + sinθ
cos3θ

(A.3) 

ν12 =
(1 + sinθ)sinθ

cos2θ
(A.4) 

G21 = Es

(t
l

)31 + sinθ
3cosθ

(A.5) 

For DH [53,54]: 

E11 =
Escosθ

αsinθ(α2 − (α2 − 1)cos2θ )
(A.6) 

ν21 =
(1 − α2)cos2θ

(α2 − 1)cos2θ − α2 (A.7) 

E22 =
Essinθ

αcosθ(1 + (α2 − 1)cos2θ)
(A.8) 

ν12 =
(α2 − 1)sin2θ

1 + (α2 − 1)cos2θ
(A.9) 

G21 =
Escosθsinθ

α (A.10) 

When the aspect ratio α = l/t is much larger than 1, the formulae are simplified to be: 

E11 = Es

(t
l

)3 cosθ
sin3θ

(A.11) 

ν21 =
cos2θ
sin2θ

(A.12) 

E22 = Es

(t
l

)3 sinθ
cos3θ

(A.13) 

ν12 =
sin2θ
cos2θ

(A.14) 
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G21 = Es

(t
l

)
cosθsinθ (A.15) 

For SREH [53]: 

E11 =
Escosθ

α(α2 − (α2 − 1)cos2θ )
(A.16) 

E22 =
Es((α2 − 1)cos2θ − α2 )

(2α3 − 2α)cos3θ − 3α3cosθ
(A.17) 

ν21 = ν12 = 0 (A.18) 

G21 =
Escosθ(7α2cos2θ − cos2θ + 1)

(21α5 − 10α3 + α)cos4θ + (17α3 − 2α)cos2θ + α (A.19) 

When the aspect ratio α = l/t is much larger than 1, the formulae above are simplified to be: 

E11 = Es

(t
l

)3 cosθ
sin2θ

(A.20) 

E22 = Es

(t
l

) sin2θ
3cosθ − 2cos3θ

(A.21) 

ν21 = ν12 = 0 (A.22) 

G21 = Es

(t
l

)3 1
3cosθ

(A.23) 

For FPSH [52]: 

E11 = E22 =
Es

α3sin2θ + αcos2θ
(A.24) 

ν21 = ν12 = 0 (A.25) 

G21 =
Es

8α3cos2θ
(A.26) 

When the aspect ratio α = l/t is much larger than 1, the formulae above are rewritten to be: 

E11 = E22 = Es

(t
l

)3 1
sin2θ

(A.27) 

ν21 = ν12 = 0 (A.28) 

G21 = Es

(t
l

)3 1
8cos2θ

(A.29) 

For REH [50,51]: 

E11 = Es

(t
l

)3 cosθ
(2 − sinθ)sin2θ

(A.30) 

ν21 = −
cos2θ

(2 − sinθ)sinθ
(A.31) 

E22 = Es

(t
l

)32 − sinθ
cos3θ

(A.32) 

ν12 = −
(2 − sinθ)sinθ

cos2θ
(A.33) 

G21 = Es

(t
l

)32 − sinθ
20cosθ

(A.34) 

For DAH [54]: 

E11 = Es

(t
l

)3 tan22θcosθ + tan2θcos2θ
cos3θtan22θtan2θ(tan2θ − tanθ)

(A.35) 
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ν21 =
− 1

tan2θtanθ
(A.36) 

E22 = Es

(t
l

)3tan22θcosθ + tan2θcos2θ
cos3θ(tan2θ − tanθ)

(A.37) 

ν12 = − tan2θtanθ (A.38) 

Adopting l = 1, t = 0.02 (correspondingly the aspect ratio α = l/t = 50), Es = 209GPa, νs = 0.3 (νs contributes little to the effective elastic modulus 
here), and θ = 30◦, the formulae provide the theoretical results in Table A1.

In the formulae above, the moduli are proportional to 
(

t
l

)
, usually indicating that they are high and correspond to the stretching-dominant 

deformation mode; on the contrary, the moduli are proportional to 
(

t
l

)3
, usually suggesting that they are low and correspond to the bending- 

dominant deformation mode. Then, we inferred that DH’s G21 and SREH’s E22 are stretching-dominated mechanical properties and should be rela
tively large. It is also noteworthy that the analytical solution for the effective shear moduli of DAH is not available in the literature. It’s anticipated that 
the effective shear moduli of DAH should be relatively large, since DAH and DH have some similarity in geometric topology.

Table A1 
The comparison between the numerical and analytical solution of the effective properties of six lattice structures.

Lattice Method E11 (MPa) E22 (MPa) ν12 ν21 G12 (MPa) G21 (MPa)

PPR HH FEM 3.785 3.763 1.000 0.996 0.944 0.952
Theory 3.862 3.862 1.000 1.000 0.965 0.965

DH FEM 11.270 1.267 0.334 2.964 1765.21 1784.08
Theory 11.570 1.287 0.333 2.995 1809.99 1809.99

ZPR SREH FEM 5.632 794.409 2.628e-6 1.845e-8 0.617 0.621
Theory 5.785 805.085 0 0 0.643 0.643

FPSH FEM 6.506 6.576 1.427e-4 1.415e-4 0.272 0.275
Theory 6.680 6.680 0 0 0.279 0.279

NPR REH FEM 3.788 3.956 -1.024 -0.972 0.143 0.143
Theory 3.862 3.862 -1.000 -1.000 0.145 0.145

DAH FEM 5.910 6.153 -1.013 -0.971 573.05 579.23
Theory 6.164 6.164 -1.000 -1.000 NA NA

Appendix B. Tables for the imperfection sensitivity coefficients

Table A2 
The imperfection sensitivity coefficients for different lattice materials when the imperfection fraction f = 1 %.

Lattice S0.01
E11

S0.01
E22

S0.01
G12

S0.01
ν21

S0.01
ν12

PPR HH 0.084 0.081 0.053 0.0637 0.0605
DH 0.016 0.016 0.491 0.0011 0.0011

ZPR SREH 0.072 0.982 0.023 2.709E-02 7.611E-02
FPSH 0.046 0.042 0.025 1.635E-04 1.651E-04

NPR REH 0.137 0.169 0.026 0.1516 0.1833
DAH 0.043 0.126 0.952 0.0657 0.1468

Table A3 
The imperfection sensitivity coefficients for different lattice materials when the imperfection fraction f = 10 %.

Lattice S0.1
E11

S0.1
E22

S0.1
G12

S0.1
ν21

S0.1
ν12

PPR HH 0.622 0.633 0.521 0.4698 0.4847
DH 0.200 0.201 0.983 0.0500 0.0509

ZPR SREH 0.582 0.999 0.456 2.018E-01 7.650E-02
FPSH 0.425 0.429 0.242 3.281E-03 3.280E-03

NPR REH 0.782 0.793 0.314 0.8913 0.8968
DAH 0.401 0.696 0.997 0.6442 0.8196

Appendix C. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.compositesa.2025.109215.
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