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Abstract

In this paper we study universal deformations in anisotropic Cauchy elasticity. We show that the
universality constraints of hyperelasticity and Cauchy elasticity for transversely isotropic, orthotropic,
and monoclinic solids are equivalent. This implies that for each of these symmetry classes the universal
deformations and the corresponding universal material preferred directions of hyperelastic and Cauchy
elastic solids are identical. This is consistent with previous findings for isotropic solids. Universal
deformations and material preferred directions are therefore independent of the existence or absence of
a strain energy function.
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1 Introduction

A universal deformation is a deformation that can be maintained in the absence of body forces for every
material in a given class. Equivalently, such a deformation can be supported by boundary tractions alone,
independently of the specific constitutive equations within that class—for instance, homogeneous compress-
ible isotropic solids or homogeneous anisotropic solids with prescribed symmetry. In nonlinear elasticity,
universal deformations have long played an important role both experimentally [Rivlin and Saunders, 1951]
and theoretically [Tadmor et al., 2012, Goriely, 2017].

The concept of universal deformations was introduced by Jerry Ericksen in two seminal papers [Ericksen,
1954, 1955]. In [Ericksen, 1955], he proved that in homogeneous compressible isotropic solids, all universal
deformations must necessarily be homogeneous. His earlier study of incompressible isotropic solids [Ericksen,
1954] was motivated by Rivlin’s pioneering work on special classes of deformations [Rivlin, 1948, 1949a,b].
Ericksen also conjectured that deformations with constant principal invariants must be homogeneous, a
conjecture later shown to be false by Fosdick [1966]. In fact, the fifth universal family discovered by Singh
and Pipkin [1965] and Klingbeil and Shield [1966] provides examples of inhomogeneous universal deformations
with constant principal invariants. Whether further inhomogeneous universal deformations with constant
invariants exist remains unknown.

Since Ericksen’s original contributions, the study of universal deformations has been extended to more
general settings, including inhomogeneous isotropic elasticity [Yavari, 2021], anisotropic elasticity [Yavari
and Goriely, 2021, 2023], and anelasticity [Yavari and Goriely, 2016, Goodbrake et al., 2020]. In the linear
theory, the analogue of universal deformations is that of universal displacements [Truesdell, 1966, Gurtin,
1972, Yavari et al., 2020, Yavari and Goriely, 2022b]. In compressible anisotropic linear elasticity, these
were classified for all eight symmetry classes in [Yavari et al., 2020], where it was shown that the higher the
material symmetry, the larger the space of universal displacements. Thus, isotropic solids admit the largst
set of universal displacements, while triclinic solids admit the smallest. This classification was later extended
to inhomogeneous solids [Yavari and Goriely, 2022b] and to linear anelasticity [Yavari and Goriely, 2022a].

More recently, universal deformations have been studied in Cauchy elasticity, a broader framework that
contains hyperelasticity as a special case but does not presuppose the existence of an energy function [Cauchy,
1828, Truesdell, 1952, Yavari and Goriely, 2025]. For inhomogeneous isotropic Cauchy elastic solids, it was
shown that the sets of universal deformations and universal inhomogeneities coincide with those of Green
elasticity [Yavari, 2024]. The universal displacements of anisotropic linear Cauchy elastic solids have also
been systematically analyzed [Yavari and Sfyris, 2025]. Interestingly, despite the greater generality of Cauchy
elasticity, for each of the eight symmetry classes the resulting set of universal displacements is identical to
that of linear hyperelasticity.

Universal deformations have also been examined in the setting of implicit elasticity, where constitutive
relations take the form F(σ,b) = 0, with σ the Cauchy stress and b the Finger tensor [Morgan, 1966,
Rajagopal, 2003, 2007]. It has been shown that in compressible isotropic implicit elasticity all universal
deformations are homogeneous [Yavari and Goriely, 2024]. However, unlike in Green or Cauchy elasticity,
not every homogeneous deformation is admissible. The resulting set of universal deformations is therefore
material-dependent, though always contained in the class of homogeneous deformations. This distinction
underscores how the constitutive structure influences universality.

A frequently encountered class of solids with internal constraints in engineering applications is that
of compressible materials reinforced by inextensible fibers [Pipkin and Rogers, 1971, Pipkin, 1974, 1979,
Erdemir and Carroll, 2007]. This idealization captures many natural and engineered materials consisting of
a soft matrix reinforced by stiff fibers. The literature on universal deformations in such solids is limited.
Beskos [1972] studied homogeneous compressible isotropic solids with inextensible fibers and showed that
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certain subsets of Families 1–4 of universal deformations remain universal for specific fiber distributions; all
are homogeneous except for the shearing of a circular tube with circumferential fibers. A similar study for
incompressible isotropic hyperelastic solids was presented in [Beskos, 1973], and universal relations for both
classes were discussed in [Saccomandi and Beatty, 2002]. Beatty [1978, 1989] identified all fiber distributions
in homogeneous compressible isotropic solids with a single family of inextensible fibers for which homogeneous
deformations are universal, proving that only three such distributions exist and that in each case the fibers
remain straight in both the deformed and reference configurations. In a recent study, universal deformations
in compressible isotropic Cauchy elastic solids reinforced with a single family of inextensible fibers were
systematically characterized [Yavari, 2025]. This work established the first systematic classification of such
deformations, thereby extending the classical results of Beskos and Beatty to the broader framework of
Cauchy elasticity.

The purpose of the present work is to study universal deformations and universal material-preferred
directions in anisotropic Cauchy elasticity. We show that for transverse isotropy, orthotropy, and monoclinic
elasticity in both compressible and incompressible cases, the sets of universal deformations and universal
material preferred directions coincide exactly with those of the corresponding anisotropic hyperelasticity.
This shows that, even within the more general framework of Cauchy elasticity, universality in these classes
is governed entirely by material symmetry.

This paper is organized as follows. A concise overview of nonlinear elasticity is presented in §2. In §3,
the equivalence between the universality constraints in hyperelasticity and those in Cauchy elasticity for
homogeneous compressible and incompressible isotropic solids is examined. The same problem is addressed
for homogeneous compressible and incompressible transversely isotropic solids in §4, for orthotropic solids
in §5, and for monoclinic solids in §6. Conclusions are given in §7.

2 Nonlinear elasticity

Within the framework of nonlinear anelasticity, an undeformed body B is identified with a Riemannian
manifold (B,G), where G is the material metric tensor. A deformation of this body is defined by mapping
B to (S,g), i.e., φ : B → S, where S is also a Riemannian manifold. We assume that (S,g) is the Euclidean
three-dimensional space (or R3). In nonlinear elasticity, (B,G) is an embedded submanifold of R3. The
tangent map of φ is the deformation gradient, F = T φ, which is a linear map F(X) : TXB → Tφ(X)S

at each material point X ∈ B. The deformation gradient tensor and its transpose FT are expressed in
components as

F a
A =

∂φa

∂XA
(X) , (2.1)

and (
FT(X)

)A
a = gab (x)F

b
B (X)GAB (X) , (2.2)

where {XA} and {xa} are coordinate charts on B and S, respectively. The right Cauchy-Green deformation
tensor is defined as C(X) = FT(X)F(X). The associated tensor C♭, where ♭ denotes the flat operator
induced by the metric tensor (index lowering), is the pull-back of the metric g by the deformation, i.e.,
C♭ = φ∗g. In components, it reads

CAB = gab F
a
A F b

B . (2.3)

The Eulerian representation of C♭ is c♭ = φ∗G which is the push-forward of the metric G by φ and
has components cab = F−A

a F
−B

b GAB , where F−A
a are components of F−1. The left Cauchy-Green

deformation tensor is defined as the pull-back of the associated tensor g♯ to the reference configuration, i.e.,
B♯ = φ∗(g♯), where ♯ is the sharp operator induced from the metric tensor (index raising). In components,
it is written as BAB = F−A

a F
−B

b g
ab. Equivalently, the spatial representation of B♯ is b♯ = φ∗ (G

♯), which
is called the Finger deformation tensor and is expressed in components as

bab = F a
A F b

B GAB . (2.4)
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Note that c = b−1. The principal invariants of b or C (the two tensors have the same principal invariants),
denoted by I1, I2, and I3, are defined as

I1 = trb = bab gab , I2 =
1

2

(
I21 − trb2

)
=

1

2

(
I21 − bab bcd gac gbd

)
, I3 = detb . (2.5)

The first and second Piola-Kirchhoff stresses are defined by

P = J σF−⋆ , S = F−1P = J F−1 σF−⋆ , (2.6)

where σ is the Cauchy stress, P is the first Piola-Kirchhoff stress, and S is the second Piola–Kirchhoff stress.
The volume elements dv and dV in the deformed and undeformed configurations, respectively, are related
as dv = J dV , where J is the Jacobian of deformation and is defined as

J =

√
detg

detG
detF . (2.7)

In components these read
P aA = J σab F−A

b , (2.8)

and
SAB = F−A

a P
aB = J F−A

a σ
ab F−B

b . (2.9)

In the absence of body forces, the equilibrium equations in the current configuration are expressed in terms
of the Cauchy stress as

σab
|b = 0 , (2.10)

where (·)|a denotes covariant derivative with respect to the Levi-Civita connection of the ambient space
metric g.

An anisotropic hyperelastic solid is characterized by an energy function (per unit undeformed volume)
that takes the following functional form

W = Ŵ (C♭,G, ζ1, · · · , ζn) , (2.11)

where ζi, i = 1, · · · , n are the structural tensors that describe the material symmetry group of the solid. By
Hilbert’s theorem, one can write W = W (X, I1, · · · , Im), where I1, · · · , Im are basic invariants that form an
integrity basis for the set of tensors given in (2.11). However, a Cauchy elastic solid does not necessarily
have a strain-energy function. For Cauchy elastic solids, the stress at any given material point depends
explicitly on the strain at that point [Cauchy, 1828, Truesdell, 1952, Truesdell and Noll, 2004]. Material-
frame indifference in Cauchy elasticity implies that the second Piola–Kirchhoff stress is expressed in the
following functional form [Truesdell and Noll, 2004]

S = Ŝ (X,C♭,G, ζ1, · · · , ζn) , (2.12)

or
S = S (X, I1, · · · , Im) . (2.13)

3 Universality Constraints in Isotropic Elasticity

This section serves as a prelude to the subsequent developments. Its purpose is to fix notation and clarify
conventions by revisiting and reproving known results for isotropic Cauchy elasticity and hyperelasticity. No
new results are claimed here; rather, the presentation is intended to provide a consistent foundation for the
analysis that follows.
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3.1 Compressible isotropic solids

The Cauchy stress for a compressible isotropic Cauchy elastic solid is represented as [Yavari, 2024]

σab = α1 (I1, I2, I3) g
ab + α2 (I1, I2, I3) b

ab + α3 (I1, I2, I3) c
ab , (3.1)

where α1, α2 and α3 are response functions. Substituting (3.1) into the equilibrium equations (2.10) and
using metric compatibility (gab|c = 0) gives

α2 b
ab

|b + α3 c
ab

|b + α1,1 I1,b g
ab + α1,2 I2,b g

ab + α1,3 I3,b g
ab + α2,1 I1,b b

ab + α2,2 I2,b b
ab

+ α2,3 I3,b b
ab + α3,1 I1,b c

ab + α3,2 I2,b c
ab + α3,3 I3,b c

ab = 0 ,
(3.2)

in which the following relations have been used

αi,b = αi,j Ij,b , (i = 1, 2, 3; j = 1, 2, 3) , (3.3)

and αi,j =
∂αi

∂Ij
and Ij,b =

∂Ij
∂xb

. Since αi are arbitrary functions, (3.2) holds only if the coefficients of αi

and αi,j vanish, and hence,

bab|b = cab|b = 0 ,

I1,b g
ab = I2,b g

ab = I3,b g
ab = 0 ,

I1,b b
ab = I2,b b

ab = I3,b b
ab = 0 ,

I1,b c
ab = I2,b c

ab = I3,b c
ab = 0 .

(3.4)

From (3.4)2, it follows that I1, I2, and I3 are constant. Consequently, the constraints (3.4)3 and (3.4)4 hold
trivially. Taken together with (3.4)1 and the compatibility equations, this result implies that the universal
deformations are homogeneous. In conclusion, the universality constraints for homogeneous compressible
isotropic Cauchy elastic solids are the same as those in hyperelasticity as was shown in [Yavari, 2024].

3.2 Incompressible isotropic solids

As a prelude to our discussion of anisotropic solids, this section examines the equivalence of the universal-
ity constraints in Cauchy elasticity and hyperelasticity for homogeneous incompressible isotropic solids. In
[Yavari, 2024], it was shown that the universal deformations and inhomogeneities of compressible and incom-
pressible isotropic Cauchy elasticity are identical to those of hyperelasticity. Following the same notation
defined in [Yavari, 2024, Yavari and Goriely, 2023], we aim to provide an alternative proof of this result in
this section.

For incompressible isotropic hyperelastic and Cauchy elastic solids, the Cauchy stress tensor σ has the
following representations [Yavari, 2024]

σ♯ = −pg♯ + 2W1 (I1, I2)b
♯ − 2W2 (I1, I2) c

♯ ,

σ♯ = −pg♯ + α1 (I1, I2)b
♯ + α2 (I1, I2) c

♯ ,
(3.5)

where p is the Lagrange multiplier corresponding to the incompressibility constraint (I3 = 1), Wi =
∂W

∂Ii
,

and α1 and α2 are arbitrary response functions in Cauchy elasticity.
The process of deriving the universality constraints and material preferred directions in hyperelasticity

as well as in Cauchy elasticity may be briefly explained as follows. We first substitute the corresponding
Cauchy stress into the equilibrium equations (2.10) to obtain p|a as

p|b g
ab = 2

[
W1 b

ab −W2 c
ab
]
|b , (3.6)

in hyperelasticity, and
p|b g

ab =
[
α1 b

ab + α2 c
ab
]
|b , (3.7)
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in Cauchy elasticity. The integrability conditions for the existence of p are p|ab = p|ba. The resulting
expression in hyperelasticity is written as

p|ab =
∑
κ

Aκ
ab Wκ , (3.8)

while in Cauchy elasticity it takes the following form

p|ab =
∑
κ

(
B1κ

ab α1κ + B2κ
ab α2κ

)
, (3.9)

where Wκ =
∂W

∂Iκ
and αiκ =

∂αi

∂Iκ
, where κ is a multi-index. The symmetries of the matrices of the

coefficients of Wκ and αiκ, namely Aκ
ab and Biκ

ab are called universality constraints of hyperelasticity and
Cauchy elasticity, respectively. In fact, to ensure the symmetry of p|ab, it is necessary that Aκ

ab = Aκ
ba in

hyperelasticity, and Biκ
ab = Biκ

ba in Cauchy elasticity (for more details, see [Yavari, 2024, Yavari and Goriely,
2023, 2021]).

For isotropic hyperelastic solids [Yavari, 2024, Yavari and Goriely, 2023, 2021]

A1
ab = bna |bn ,

A2
ab = cna |bn ,

A11
ab = bna |n I1,b + (bna I1,n)|b ,

A22
ab = −cna |n I2,b − (cna I2,n)|b ,

A12
ab = bna |n I2,b + (bna I2,n)|b − cna |n I1,b − (cna I1,n)|b ,

A111
ab = bna I1,n I1,b ,

A222
ab = −cna I2,n I2,b ,

A112
ab = bna (I1,b I2,n + I1,n I2,b)− cna I1,n I1,b ,

A122
ab = bna I2,n I2,b − cna (I1,b I2,n + I1,n I2,b) ,

(3.10)

where f,a = f|a = ∂f/∂xa when f is a scalar field.
We know that B1κ

ab is the matrix of the coefficient of α1κ, and B2κ
ab is the matrix of the coefficient of α2κ.

We omit κ when it is zero, so that Bi
ab corresponds to the coefficients of αi. A total of twelve universality

constraints for Cauchy elasticity are obtained from the symmetry conditions of the following terms [Yavari,
2024]

B1
ab = bna |bn ,

B2
ab = cna |bn ,

B11
ab = bna |n I1,b + (bna I1,n)|b ,

B22
ab = −cna |n I2,b − (cna I2,n)|b ,

B12
ab = bna |n I2,b + (bna I2,n)|b ,

B21
ab = −cna |n I1,b − (cna I1,n)|b ,

(3.11)

and

B111
ab = bna I1,n I1,b ,

B222
ab = −cna I2,n I2,b ,

B112
ab = bna (I1,b I2,n + I1,n I2,b) ,

B211
ab = −cna I1,n I1,b ,

B122
ab = bna I2,n I2,b ,

B221
ab = −cna (I1,b I2,n + I1,n I2,b) .

(3.12)
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Concerning the nine terms in hyperelasticity, we clearly have the following relations

A1
ab = B1

ab ,

A2
ab = B2

ab ,

A11
ab = B11

ab ,

A22
ab = B22

ab ,

A12
ab = B12

ab + B21
ab ,

A111
ab = B111

ab ,

A222
ab = B222

ab ,

A112
ab = B112

ab + B211
ab ,

A122
ab = B122

ab + B221
ab .

(3.13)

Ericksen [1954] showed that if I1 and I2 are not constant, the terms A111
ab , A222

ab , A112
ab and A122

ab are
symmetric only when ∇I1 and ∇I2 are parallel, with both being eigenvectors of b as well as c, or

I1,a = c12 I2,a ,

bna I1,n = λ1 I1,a ,

bna I2,n = λ1 I2,a ,

cna I1,n =
1

λ1
I1,a ,

cnaI2,n =
1

λ1
I2,a ,

(3.14)

where c12 and λ1 are scalar functions.
Now consider B111

ab . We know that if I1 is not constant, this term is symmetric only if bna I1,n = λ1 I1,a. If
I2 is not constant, the term B122

ab is likewise symmetric only when bna I2,n = λ2 I2,a (λ2 is a scalar function).
Using these two results, B112

ab is written as

B112
ab = λ2 I2,a I1,b + λ1 I1,a I2,b . (3.15)

The right-hand side of (3.15) is symmetric either when λ1 = λ2, or when ∇I1 and ∇I2 are parallel, which are
equivalent. Since the eigenvectors of b and c are the same, the symmetries of the terms B222

ab , B211
ab and B221

ab

lead to the same result. Therefore, the symmetries of {A111
ab ,A222

ab ,A112
ab ,A122

ab } are equivalent to those of
{B111

ab ,B222
ab ,B112

ab ,B211
ab ,B122

ab ,B221
ab }, since the symmetries of both sets are described by the same condition.

This condition indicates that ∇I1 and ∇I2 are parallel and are eigenvectors of b and c. Let us introduce
the notation Aκ

[ab] = Aκ
ab −Aκ

ba and Bκ
[ab] = Bκ

ab −Bκ
ba. The corresponding universality constraints are then

A[ab] = 0 and B[ab] = 0, which are equivalent to the symmetries of the terms Aκ
ab and Bκ

ab, respectively.
From this definition, we have{

A111
[ab] = A222

[ab] = A112
[ab] = A122

[ab] = 0
}

is equivalent to
{
B111

[ab] = B222
[ab] = B112

[ab] = B211
[ab] = B122

[ab] = B221
[ab] = 0

}
,

(3.16)
or {

A111
ab ,A222

ab ,A112
ab ,A122

ab

}
≡

{
B111

ab ,B222
ab ,B112

ab ,B211
ab ,B122

ab ,B221
ab

}
, (3.17)

where ≡ indicates the symmetry equivalence between the two terms which is defined as follows:

Definition 3.1 (Symmetry equivalence). Two sets of symmetry constraints are equivalent if they impose
exactly the same conditions on the admissible deformations—that is, an admissible deformation satisfies the
symmetries of one set if and only if it satisfies those of the other set.

With respect to (3.14)1 and (3.14)3, the term B12
ab can be rewritten as

B12
ab = c12 b

n
a |n I1,b + λ1,b I2,a + λ1 I2|ab . (3.18)
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Since I2 is a scalar field, I2|ab is symmetric and the symmetry of B12
ab becomes equivalent to

B12
ab ≡ c12 (b

n
a |n I1,b + λ1,b I1,a) . (3.19)

Using the same procedure, one can represent the symmetry of B11
ab as

B11
ab ≡ bna |n I1,b + λ1,b I1,a . (3.20)

Thus,
B12

ab ≡ B11
ab , (3.21)

which means that at least one of the six symmetry constraints of the terms (3.11) depends on the others.
Hence, we have at most five independent symmetry constraints in Cauchy elasticity (B1

[ab] = 0, B2
[ab] = 0,

B11
[ab] = 0, B22

[ab] = 0 and B21
[ab] = 0) and at most five independent symmetry constraints in hyperelasticity

(A1
[ab] = 0, A2

[ab] = 0, A11
[ab] = 0, A22

[ab] = 0 and A12
[ab] = 0) which are related as (see (3.13)1–(3.13)5)

A1
[ab] = B1

[ab] = 0 ,

A2
[ab] = B2

[ab] = 0 ,

A11
[ab] = B11

[ab] = 0 ,

A22
[ab] = B22

[ab] = 0 ,

A12
[ab] = B12

[ab] + B21
[ab] = 0 .

(3.22)

Consequently, these two sets of five universality constraints are equivalent. In conclusion, the universality
constraints for homogeneous incompressible isotropic Cauchy elastic solids are the same as those in hypere-
lasticity as was shown in [Yavari, 2024].

It is worth noting that the relations (3.22) follow directly from (3.13)1–(3.13)5. This is simply because if
Ai

ab = B
j
ab +Bk

ab (i, j and k are multi-indices), then Ai
ba = B

j
ba +Bk

ba, and thus Ai
ab −Ai

ba = (Bj
ab −B

j
ba) +

(Bk
ab−Bk

ba). Hence, Ai
[ab] = B

j
[ab]+Bk

[ab] = 0. In other words, any relation that holds for a set of terms must

also hold for the corresponding symmetry constraints.

4 Universality Constraints in Transversely Isotropic Elasticity

A transversely isotropic solid is characterized at each point by a single material preferred direction, oriented
normal to the local plane of isotropy. The material preferred direction is defined by a unit vector N (X).
The strain energy function in hyperelasticity and the stress in Cauchy elasticity are then described by five
independent invariants I1, · · · , I5. The additional invariants I4 and I5 are defined as

I4 = N ·C ·N , I5 = N ·C2 ·N . (4.1)

For homogeneous transversely isotropic hyperelastic solids, the second Piola-Kirchhoff stress is given by
[Yavari and Goriely, 2023]

S =2W1 G
♯ + 2W2 (I2 C

−1 − I3 C
−2) + 2W3 I3 C

−1 + 2W4 (N⊗N)

+ 2W5 [N⊗ (C ·N) + (C ·N)⊗N] .
(4.2)

The Cauchy stress is written as [Yavari and Goriely, 2023, 2021]

σ =
2√
I3

W1 b
♯ +

2√
I3

(I2 W2 + I3 W3)g
♯ − 2

√
I3 W2 c

♯ +
2√
I3

W4 (n⊗ n)

+
2√
I3

W5 [n⊗ (b · n) + (b · n)⊗ n] ,

(4.3)
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where Wi =
∂W

∂Ii
(i = 1, · · · , 5), n = F ·N. Thus, the components of the Cauchy stress tensor are

σab =
2√
I3

[W1 b
ab + (I2 W2 + I3 W3)g

ab − I3 W2 c
ab +W4 n

a nb +W5 ℓ
ab] , (4.4)

where na = F a
A NA and ℓab = na bbc nc + nb bac nc.

In transversely isotropic Cauchy elasticity, the second Piola–Kirchhoff stress is represented by [Spencer,
1970, Boehler, 1979, 1987, Yavari and Goriely, 2025]

S =a0 G
♯ + a1 C

♯ + a2 C
2♯ + a3 (N⊗N) + a4 [N⊗ (C ·N) + (C ·N)⊗N]

+ a5 [N⊗ (C2 ·N) + (C2 ·N)⊗N] ,
(4.5)

and thus the Cauchy stress is written as

σ =ã0 g
♯ + ã1 b

♯ + ã2 c
♯ + ã3 (n⊗ n) + ã4 [n⊗ (b · n) + (b · n)⊗ n]

+ ã5 [n⊗ (c · n) + (c · n)⊗ n] ,
(4.6)

where ai(I1, · · · , I5) and ãi(I1, · · · , I5) , i = 0, · · · , 5 are the response functions.
For homogeneous incompressible transversely isotropic solids I3 = 1, and therefore the second Piola-

Kirchhoff stress in hyperelasticity is represented by

S =− pC−1 + 2W1 G
♯ + 2W2 (I2 C

−1 −C−2) + 2W4 (N⊗N)

+ 2W5 [N⊗ (C ·N) + (C ·N)⊗N] ,
(4.7)

where W = W (I1, I2, I4, I5) and p is the Lagrange multiplier corresponding to the incompressibility con-
straint I3 = 1. Hence, the Cauchy stress reads

σ =− pg♯ + 2W1 b
♯ − 2W2 c

♯ + 2W4 (n⊗ n) + 2W5 [n⊗ (b · n) + (b · n)⊗ n] , (4.8)

which has components

σab = −p gab + 2W1 b
ab − 2W2 c

ab + 2W4 n
a nb + 2W5 (n

a bbc nd gcd + nb bac nd gcd) . (4.9)

Similarly, by taking I3 = 1 and using the Cayley-Hamilton theorem, the second Piola-Kirchhoff stress for
incompressible transversely isotropic Cauchy elastic solids can be derived from (4.5) as

S =− pC−1 + ā0 G
♯ + ā1 C

♯ + ā2 (N⊗N) + ā4 [N⊗ (C ·N) + (C ·N)⊗N]

+ ā5 [N⊗ (C−1 ·N) + (C−1 ·N)⊗N] ,
(4.10)

where āi (I1, I2, I4, I5), i = 0, 1, 2, 4, 5 are the response functions. We can use the Cayley-Hamilton theorem
again to write the Cauchy stress for incompressible solids as

σ =− pg♯ + α1 b
♯ + α2 c

♯ + α4 (n⊗ n) + α5 [n⊗ (b · n) + (b · n)⊗ n]

+ α6 [n⊗ (c · n) + (c · n)⊗ n] ,
(4.11)

where αi = αi (I1, I2, I4, I5), i = 1, 2, 4, 5, 6 are arbitrary response functions. In the following sections, the
equivalence of the universality constraints in hyperelasticity and those in Cauchy elasticity is investigated
separately for compressible and incompressible cases.

4.1 Compressible transversely isotropic solids

For homogeneous compressible transversely isotropic Cauchy elastic solids, the Cauchy stress (4.6) in com-
ponents reads

σab = α1 g
ab + α2 b

ab + α3 c
ab + α4 n

a nb + α5 ℓ
ab + α6 ℓ̄

ab , (4.12)
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where ℓ̄ab = na cbc nc + nb cac nc, and αi = αi (I1, I2, I3, I4, I5), i = 1, · · · , 6 are arbitrary response functions.
Substituting (4.12) into the equilibrium equations (2.10) and using metric compatibility, one obtains

α2 b
ab

|b + α3 c
ab

|b + α4

(
na nb

)
|b + α5 ℓ

ab
|b + α6 ℓ̄

ab
|b + α1,1 I1,b g

ab + α1,2 I2,b g
ab + α1,3 I3,b g

ab

+ α1,4 I4,b g
ab + α1,5 I5,b g

ab + α2,1 I1,b b
ab + α2,2 I2,b b

ab + α2,3 I3,b b
ab + α2,4 I4,b b

ab + α2,5 I5,b b
ab

+ α3,1 I1,b c
ab + α3,2 I2,b c

ab + α3,3 I3,b c
ab + α3,4 I4,b c

ab + α3,5 I5,b c
ab + α4,1 I1,b (n

a nb) + α4,2 I2,b (n
a nb)

+ α4,3 I3,b (n
a nb) + α4,4 I4,b (n

a nb) + α4,5 I5,b (n
a nb) + α5,1 I1,b ℓ

ab + α5,2 I2,b ℓ
ab + α5,3 I3,b ℓ

ab

+ α5,4 I4,b ℓ
ab + α5,5 I5,b ℓ

ab + α6,1 I1,b ℓ̄
ab + α6,2 I2,b ℓ̄

ab + α6,3 I3,b ℓ̄
ab + α6,4 I4,b ℓ̄

ab + α6,5 I5,b ℓ̄
ab = 0 .

(4.13)

Since αi and its derivatives are independent functions, (4.13) can be satisfied only if the coefficients of αi

and αi,j vanish. This leads to the following universality constraints

bab|b = cab|b = 0 ,(
na nb

)
|b = 0 ,

ℓab|b = 0 ,

ℓ̄ab|b = 0 ,

Ii,b g
ab = 0 ,

Ii,b b
ab = 0 ,

Ii,b c
ab = 0 ,

Ii,b n
a nb = 0 ,

Ii,b ℓ
ab = 0 ,

Ii,b ℓ̄
ab = 0 ,

(4.14)

where i = 1, · · · , 5. Except for (4.14)4 and (4.14)10, the remaining constraints in (4.14) are identical to those
of compressible transversely isotropic hyperelastic solids (see [Yavari and Goriely, 2023, 2021]). Therefore,
the following results are obtained. First, by comparing with (3.4), one finds that (4.14)1, (4.14)5, (4.14)6, and
(4.14)7 , for i = 1, 2, 3, are the universality constraints for compressible isotropic solids. Thus, the universal
deformations for transversely isotropic solids must be homogeneous. Second, the constraints (4.14)5 imply
that Ii (i = 1, . . . , 5) are constant (note that since Ii,a = F−A

a Ii,A = 0, then Ii,A = 0). With this result,
(4.14)6, (4.14)7, (4.14)8, and (4.14)9 are trivially satisfied. Third, from (4.14)2 and (4.14)3, it follows that
N is a constant unit vector [Yavari and Goriely, 2023, 2021].

It follows immediately that for homogeneous deformations, with constant invariants Ii and a constant
unit vector N, the additional universality constraints in Cauchy elasticity, namely (4.14)4 and (4.14)10, are
satisfied identically. Therefore, the universality constraints in Cauchy elasticity are equivalent to those of
hyperelasticity. In summary, we have proved the following result.

Proposition 4.1. The universal deformations and material preferred directions of compressible transversely
isotropic Cauchy elasticity are identical to those of compressible transversely isotropic hyperelasticity.

4.2 Incompressible transversely isotropic solids

The method used to obtain the universality constraints for incompressible transversely isotropic solids follows
exactly the same steps as those described in §3.2 for incompressible isotropic solids: we first substitute the
two expressions for the Cauchy stress, given by (4.8) and (4.11) for hyperelastic and Cauchy elastic solids,
respectively, into the equilibrium equations (2.10) to determine p|a as

p|b g
ab = 2

[
W1 b

ab −W2 c
ab +W4 n

a nb +W5 ℓ
ab
]
|b , (4.15)
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in hyperelasticity, and

p|b g
ab =

[
α1 b

ab + α2 c
ab + α4 n

a nb + α5 ℓ
ab + α6 ℓ̄

ab
]
|b , (4.16)

in Cauchy elasticity. Recall that in both cases, the integrability condition for the existence of p requires p|ab
to be symmetric, that is, p|ab = p|ba.

In hyperelasticity, p|ab is written as p|ab =
∑

κ A
κ
ab Wκ, where Wκ are independent functions. The

symmetry condition p|ab = p|ba is then identical to the symmetries of the terms Aκ
ab, i.e., Aκ

ab = Aκ
ba.

Yavari and Goriely [2023] demonstrated that there are 34 universality constraints in transversely isotropic
hyperelasticity. The first nine constraints are the same as those in isotropic solids, i.e., the symmetries of
the terms represented by (3.10). They showed that the remaining 25 constraints are the symmetries of the
following terms

A4
ab = (na n

n)|nb ,

A5
ab = ℓna|nb ,

A44
ab = (na n

n)|n I4,b + (na n
n I4,n)|b ,

A55
ab = ℓna|n I5,b + (ℓna I5,n)|b ,

A14
ab = bna|n I4,b + (bna I4,n)|b + (na n

n)|n I1,b + (na n
n I1,n)|b ,

A15
ab = bna|n I5,b + (bna I5,n)|b + ℓna|n I1,b + (ℓna I1,n)|b ,

A24
ab = −cna|n I4,b − (cna I4,n)|b + (na n

n)|n I2,b + (na n
n I2,n)|b ,

A25
ab = −cna|n I5,b − (cna I5,n)|b + ℓna|n I2,b + (ℓna I2,n)|b ,

A45
ab = (na n

n)|n I5,b + (na n
n I5,n)|b + ℓna|n I4,b + (ℓna I4,n)|b ,

(4.17)

and

A444
ab = na n

n I4,n I4,b ,

A555
ab = ℓna I5,n I5,b ,

A114
ab = bna (I4,n I1,b + I4,b I1,n) + na n

n I1,n I1,b ,

A115
ab = bna (I5,n I1,b + I5,b I1,n) + ℓna I1,n I1,b ,

A124
ab = bna (I4,n I2,b + I4,b I2,n)− cna (I4,n I1,b + I4,b I1,n) + na n

n(I1,n I2,b + I1,b I2,n) ,

A125
ab = bna (I5,n I2,b + I5,b I2,n)− cna (I5,n I1,b + I5,b I1,n) + ℓna (I1,n I2,b + I1,b I2,n) ,

A144
ab = bna I4,n I4,b + na n

n (I4,n I1,b + I4,b I1,n) ,

A145
ab = bna (I4,n I5,b + I4,b I5,n) + na n

n (I1,n I5,b + I1,b I5,n) + ℓna (I1,n I4,b + I1,b I4,n) ,

A155
ab = bna I5,n I5,b + ℓna (I1,n I5,b + I1,b I5,n) ,

A224
ab = −cna (I4,n I2,b + I4,b I2,n) + na n

n I2,n I2,b ,

A225
ab = −cna (I5,n I2,b + I5,b I2,n) + ℓna I2,n I2,b ,

A244
ab = −cna I4,n I4,b + na n

n (I4,n I2,b + I4,b I2,n) ,

A245
ab = −cna (I5,n I4,b + I5,b I4,n) + na n

n (I2,n I5,b + I2,b I5,n) + ℓna (I2,n I4,b + I2,b I4,n) ,

A255
ab = −cna I5,n I5,b + ℓna (I2,n I5,b + I2,b I5,n) ,

A445
ab = na n

n (I4,n I5,b + I4,b I5,n) + ℓna I4,n I4,b ,

A455
ab = na n

n I5,n I5,b + ℓna (I4,n I5,b + I4,b I5,n) .

(4.18)

In Cauchy elasticity, p|ab can be computed as

p|ab =
∑
κ

(B1κ
ab α1κ + B2κ

ab α2κ + B4κ
ab α4κ + B5κ

ab α5κ + B6κ
ab α6κ) , (4.19)
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where B1κ
ab , B2κ

ab , B4κ
ab , B5κ

ab and B6κ
ab are the matrices of the coefficients of α1κ, α2κ, α4κ, α5κ and α6κ,

respectively and αiκ = ∂αi/∂Iκ (κ is a multi-index) are independent functions. Therefore, p|ab = p|ba
implies that Biκ

ab must be symmetric, i.e., Biκ
ab = Biκ

ba. The first twelve Cauchy elasticity terms Bκ
ab are the

same as those of isotropic solids given in (3.11) and (3.12). It can be shown that in transversely isotropic
Cauchy elasticity the remaining terms are obtained as follows (note that when κ = 0, we ignore this index
in Biκ

ab, and hence, Bi
ab corresponds to the matrix of the coefficient of αi)

B4
ab = (na n

n)|nb ,

B5
ab = ℓna|nb ,

B44
ab = (na n

n)|n I4,b + (na n
n I4,n)|b ,

B55
ab = ℓna|n I5,b + (ℓna I5,n)|b ,

B14
ab = bna|n I4,b + (bna I4,n)|b ,

B15
ab = bna|n I5,b + (bna I5,n)|b ,

B24
ab = −cna|n I4,b − (cna I4,n)|b ,

B25
ab = −cna|n I5,b − (cna I5,n)|b ,

B41
ab = (na n

n)|n I1,b + (na n
n I1,n)|b ,

B42
ab = (na n

n)|n I2,b + (na n
n I2,n)|b ,

B45
ab = (na n

n)|n I5,b + (na n
n I5,n)|b ,

B51
ab = ℓna|n I1,b + (ℓna I1,n)|b ,

B52
ab = ℓna|n I2,b + (ℓna I2,n)|b ,

B54
ab = ℓna|n I4,b + (ℓna I4,n)|b ,

(4.20)
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and

B444
ab = na n

n I4,n I4,b ,

B555
ab = ℓna I5,n I5,b ,

B114
ab = bna (I4,n I1,b + I4,b I1,n) ,

B115
ab = bna (I5,n I1,b + I5,b I1,n) ,

B124
ab = bna (I4,n I2,b + I4,b I2,n) ,

B125
ab = bna (I5,n I2,b + I5,b I2,n) ,

B144
ab = bna I4,n I4,b ,

B145
ab = bna (I4,n I5,b + I4,b I5,n) ,

B155
ab = bna I5,n I5,b ,

B214
ab = −cna (I4,n I1,b + I4,b I1,n) ,

B215
ab = −cna (I5,n I1,b + I5,b I1,n) ,

B224
ab = −cna (I4,n I2,b + I4,b I2,n) ,

B225
ab = −cna (I5,n I2,b + I5,b I2,n) ,

B244
ab = −cna I4,n I4,b ,

B245
ab = −cna (I5,n I4,b + I5,b I4,n) ,

B255
ab = −cna I5,n I5,b ,

B411
ab = na n

n I1,n I1,b ,

B412
ab = na n

n (I1,n I2,b + I1,b I2,n) ,

B415
ab = na n

n (I1,n I5,b + I1,b I5,n) ,

B422
ab = na n

n I2,n I2,b ,

B425
ab = na n

n (I2,n I5,b + I2,b I5,n) ,

B441
ab = na n

n (I4,n I1,b + I4,b I1,n) ,

B442
ab = na n

n (I4,n I2,b + I4,b I2,n) ,

B445
ab = na n

n (I4,n I5,b + I4,b I5,n) ,

B455
ab = na n

n I5,n I5,b ,

B511
ab = ℓna I1,n I1,b ,

B512
ab = ℓna (I1,n I2,b + I1,b I2,n) ,

B514
ab = ℓna (I1,n I4,b + I1,b I4,n) ,

B515
ab = ℓna (I1,n I5,b + I1,b I5,n) ,

B522
ab = ℓna I2,n I2,b ,

B524
ab = ℓna (I2,n I4,b + I2,b I4,n) ,

B525
ab = ℓna (I2,n I5,b + I2,b I5,n) ,

B544
ab = ℓna I4,n I4,b ,

B554
ab = ℓna (I4,n I5,b + I4,b I5,n) .

(4.21)

Moreover, there are 15 additional terms in Cauchy elasticity which are associated with the coefficients of
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α6κ:

B6
ab = ℓ̄na|nb ,

B61
ab =

(
ℓ̄na I1,n

)
|b + ℓ̄na|n I1,b ,

B62
ab =

(
ℓ̄na I2,n

)
|b + ℓ̄na|n I2,b ,

B64
ab =

(
ℓ̄na I4,n

)
|b + ℓ̄na|n I4,b ,

B65
ab =

(
ℓ̄na I5,n

)
|b + ℓ̄na|n I5,b ,

B611
ab = ℓ̄na I1,n I1,b ,

B622
ab = ℓ̄na I2,n I2,b ,

B644
ab = ℓ̄na I4,n I4,b ,

B655
ab = ℓ̄na I5,n I5,b ,

B612
ab = ℓ̄na (I2,n I1,b + I2,b I1,n) ,

B614
ab = ℓ̄na (I4,n I1,b + I4,b I1,n) ,

B615
ab = ℓ̄na (I5,n I1,b + I5,b I1,n) ,

B624
ab = ℓ̄na (I4,n I2,b + I4,b I2,n) ,

B625
ab = ℓ̄na (I5,n I2,b + I5,b I2,n) ,

B645
ab = ℓ̄na (I5,n I4,b + I5,b I4,n) .

(4.22)

Let us write the relations between the symmetry constraints Bκ
[ab] = 0 and Aκ

[ab] = 0 for transversely
isotropic solids. The first nine relations linking the symmetry constraints in hyperelasticity with those
in Cauchy elasticity are identical to those derived directly from (3.13) in isotropic solids. According to
(4.17), (4.18), (4.20) and (4.21), the remaining constraints are given by

A4
[ab] = B4

[ab] = 0 ,

A5
[ab] = B5

[ab] = 0 ,

A44
[ab] = B44

[ab] = 0 ,

A55
[ab] = B55

[ab] = 0 ,

A14
[ab] = B14

[ab] + B41
[ab] = 0 ,

A15
[ab] = B15

[ab] + B51
[ab] = 0 ,

A24
[ab] = B24

[ab] + B42
[ab] = 0 ,

A25
[ab] = B25

[ab] + B52
[ab] = 0 ,

A45
[ab] = B45

[ab] + B54
[ab] = 0 ,

(4.23)
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and

A444
[ab] = B444

[ab] = 0 ,

A555
[ab] = B555

[ab] = 0 ,

A114
[ab] = B114

[ab] + B411
[ab] = 0 ,

A115
[ab] = B115

[ab] + B511
[ab] = 0 ,

A124
[ab] = B124

[ab] + B214
[ab] + B412

[ab] = 0 ,

A125
[ab] = B125

[ab] + B215
[ab] + B512

[ab] = 0 ,

A144
[ab] = B144

[ab] + B414
[ab] = 0 ,

A145
[ab] = B145

[ab] + B415
[ab] + B514

[ab] = 0 ,

A155
[ab] = B155

[ab] + B515
[ab] = 0 ,

A224
[ab] = B224

[ab] + B422
[ab] = 0 ,

A225
[ab] = B225

[ab] + B522
[ab] = 0 ,

A244
[ab] = B244

[ab] + B424
[ab] = 0 ,

A245
[ab] = B245

[ab] + B425
[ab] + B524

[ab] = 0 ,

A255
[ab] = B255

[ab] + B525
[ab] = 0 ,

A445
[ab] = B445

[ab] + B544
[ab] = 0 ,

A455
[ab] = B455

[ab] + B545
[ab] = 0 .

(4.24)

Therefore, there are a total of 75 universality constraints in Cauchy elasticity, compared to 34 in hypere-
lasticity. In what follows, we will prove that the universality constraints in transversely isotropic Cauchy
elasticity and hyperelasticity are equivalent. Note that n, I1, I2, I4 and I5 are assumed to be non-constant,
although the result remains unchanged even if they are constant. Moreover, note that the twelve constraints
of Cauchy elasticity and the nine of hyperelasticity for isotropic solids are equivalent, so the proof is not
repeated here.

One of the common constraints is A555
[ab] = B555

[ab] = 0, which implies that ∇I5 is an eigenvector of ℓna , i.e.,

ℓna I5,n = λ̄5 I5,a , (4.25)

where λ̄5 is the corresponding eigenvalue. The second common constraint is A444
[ab] = B444

[ab] = 0, which
indicates that either na I4,b is symmetric or nn I4,n = 0. The former entails that ∇I4 and n are parallel, that
is,

na = c4 I4,a , (4.26)

where c4 is a scalar function. However, the latter is written as

I4,n n
n = ⟨⟨∇I4,n⟩⟩g = 0 , (4.27)

in which ⟨⟨., .⟩⟩g designates the inner product with respect to the metric tensor g, implying that ∇I4 and
n are orthogonal. As a result, the symmetry constraints in both hyperelasticity and Cauchy elasticity are
satisfied if ∇I4 and n are either parallel or orthogonal. These cases are discussed separately.

4.2.1 Case 1: n (x) and ∇I4 are parallel

Let us assume that ∇I4 and n are parallel. We first consider the terms Aκ
ab and Biκ

ab, where κ is a three-
component multi-index in hyperelasticity, or equivalently, a double index in Cauchy elasticity.
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Symmetry equivalence of Aκ
ab and Bκ

ab with κ a triple index. Consider the terms A445
ab and A455

ab in
hyperelasticity. From (4.25) and (4.26), these terms can be rewritten as

A445
ab = c4 I4,a I4,b n

n I5,n + c4 I4,a I5,b n
n I4,n + ℓna I4,n I4,b ,

A455
ab = λ̄5 I5,a I4,b + ℓna I4,n I5,b + c4 I4,a I5,b n

n I5,n .
(4.28)

If the symmetric term I4,a I4,b on the right-hand side of (4.28)1 is neglected, one can write the following
expression representing the symmetry equivalence of A445

ab

A445
ab ≡ c4 I4,a I5,b n

n I4,n + ℓna I4,n I4,b . (4.29)

The symmetry of (4.29) implies that

c4 I4,a I5,b n
n I4,n + ℓna I4,n I4,b = c4 I4,b I5,a n

n I4,n + ℓnb I4,n I4,a , (4.30)

which leads to
(c4 n

n I4,n I5,b − ℓnb I4,n) I4,a = (c4 n
n I4,n I5,a − ℓna I4,n) I4,b . (4.31)

Eq. (4.31) holds if either
c4 n

n I4,n I5,a − ℓna I4,n = c̄1 I4,a , (4.32)

or
ℓna I4,n = c4 n

n I4,n I5,a − c̄1 I4,a , (4.33)

where c̄1 is a scalar function. Substituting (4.33) into (4.28)2 gives us

A455
ab = λ̄5 I5,a I4,b + (c4 n

n I4,n I5,a − c̄1 I4,a) I5,b + c4 I4,a I5,b n
n I5,n . (4.34)

Again, omitting the symmetric term I5,a I5,b in (4.34) yields

A455
ab ≡ λ̄5 I5,a I4,b + (c4 n

n I5,n − c̄1) I4,a I5,b . (4.35)

Therefore, if λ̄5 ̸= c4 n
n I5,n − c̄1, the term A455

ab is symmetric if and only if ∇I4 and ∇I5 are parallel, i.e.,

I4,a = c45 I5,a , (4.36)

where c45 is a scalar function. It should be noted that, as given by (4.35), the other condition preserving
the symmetry of A455

ab is λ̄5 = c4 n
n I5,n − c̄1. However, this is a highly specific case that is not satisfied by

any class of the universal deformations in hyperelasticity (this can be verified by the results in [Yavari and
Goriely, 2021]). Thus, (4.36) is the only solution preserving the symmetries of A445

ab and A455
ab when n and

∇I4 are parallel. We can apply a similar approach to examine A114
ab and A144

ab . From (4.26) we have

A144
ab = bna I4,n I4,b + c4 n

n I4,n I4,a I1,b + c4 n
n I1,n I4,a I4,b ,

A114
ab = bna I4,n I1,b + bna I1,n I4,b + c4 n

n I1,n I4,a I1,b .
(4.37)

After ignoring the symmetric term, the symmetry of (4.37)1 gives the following relation

bna I4,n = c4 n
n I4,n I1,a − c̄2 I4,a , (4.38)

where c̄2 is a scalar function. Substituting (4.38) into (4.37)2 and employing (3.14)2, A
114
ab reduces to

A114
ab = c4 n

n I4,n I1,a I1,b − c̄2 I4,a I1,b + λ1 I1,a I4,b + c4 n
n I1,n I4,a I1,b . (4.39)

Eq. (4.39) can be rewritten in a simplified form as follows

A114
ab = (c4 n

n I1,n − c̄2) I4,a I1,b + λ1 I1,a I4,b . (4.40)
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Thus, the symmetry of A114
ab indicates that ∇I1 and ∇I4 are parallel. This remains the sole solution as the

other possibility λ1 = c4 n
n I1,n − c̄2 is not satisfied by any of the universal deformations.

Similarly, the symmetries of
{
A115

ab ,A155
ab

}
,
{
A224

ab ,A244
ab

}
, and

{
A225

ab ,A255
ab

}
imply, respectively, that

I1,a = c15 I5,a, I2,a = c24 I4,a, and I2,a = c25 I5,a, where c15, c24 and c25 are scalar functions. Given these
results, the symmetries of the remaining terms

{
A124

ab ,A125
ab ,A145

ab ,A245
ab

}
hold identically. Therefore, the

symmetries of Aκ
ab, where κ is a triple index, hold if and only if n, ∇I1, ∇I2, ∇I4 and ∇I5 are parallel. To

prove the symmetry equivalence of Aκ
ab and Biκ

ab, it suffices to show that this condition is the unique solution
that satisfies the symmetries of the Cauchy elasticity constraints as well. In what follows, this is discussed
in detail.

Recall that n and ∇I4 are parallel, and that ∇I5 is an eigenvector of ℓna , which together preserve the
symmetries of B444

ab and B555
ab in Cauchy elasticity. Based on these relations, one can express B445

ab as

B445
ab = c4 I4,a I4,b n

n I5,n + c4 I4,a I5,b n
n I4,n , (4.41)

which after neglecting the symmetric term simplifies to

B445
ab ≡ c4 I4,a I5,b n

n I4,n . (4.42)

Since nn I4,n ̸= 0, from the symmetry of (4.42) it follows that ∇I4 and ∇I5 are parallel. Thus, B544
ab , B455

ab

and B554
ab are also symmetric. Equivalently, this may be written as{

B445
ab ,B544

ab ,B455
ab ,B554

ab

}
≡

{
A445

ab ,A455
ab

}
. (4.43)

Similarly, we again consider (4.26) to rewrite B441
ab as follows

B441
ab = c4 I4,a I4,b n

n I1,n + c4 I4,a I1,b n
n I4,n . (4.44)

Since the first term on the right-hand side of (4.44) is symmetric and nn I4,n ̸= 0, the symmetry of B441
ab

reduces to that of c4 I4,a I1,b, implying that ∇I4 and ∇I1 are parallel. Consequently, B144
[ab] = 0, B411

[ab] = 0

and B114
[ab] = 0 hold identically, and hence{

B441
ab ,B144

ab ,B411
ab ,B114

ab

}
≡

{
A114

ab ,A144
ab

}
. (4.45)

Proceeding with the same approach leads to the following results{
B115

ab ,B511
ab ,B155

ab ,B551
ab

}
≡

{
A115

ab ,A155
ab

}
,{

B224
ab ,B422

ab ,B244
ab ,B442

ab

}
≡

{
A224

ab ,A244
ab

}
,{

B225
ab ,B522

ab ,B255
ab ,B552

ab

}
≡

{
A225

ab ,A255
ab

}
,

(4.46)

which is equivalent to saying that ∇Ii (i = 1, 2, 4, 5) are parallel. The remaining terms B124
ab , B214

ab , B412
ab ,

B125
ab , B215

ab , B512
ab , B145

ab , B415
ab , B514

ab , B245
ab , B425

ab , and B524
ab can then be shown to be trivially symmetric.

Since n and ∇I1 are parallel, n is an eigenvector of bna , that is, b
n
a nn = λ1 na. As a result, we have

ℓna = 2λ1 na n
n , (4.47)

ℓ̄na =
2

λ1
na n

n . (4.48)
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With the given relations, it is straightforward to show that

B611
ab ≡ B511

ab ,

B622
ab ≡ B522

ab ,

B644
ab ≡ B544

ab ,

B655
ab ≡ B555

ab ,

B612
ab ≡ B512

ab ,

B614
ab ≡ B514

ab ,

B615
ab ≡ B515

ab ,

B624
ab ≡ B524

ab ,

B625
ab ≡ B525

ab ,

B645
ab ≡ B545

ab .

(4.49)

In conclusion, the symmetry constraints associated with the terms Aκ
ab, where κ is a triple index, in

hyperelasticity and those corresponding to B1κ
ab , B

2κ
ab , B

4κ
ab , B

5κ
ab , and B6κ

ab , where κ is a double index, in
Cauchy elasticity are equivalent in Case 1. Both sets are symmetric if and only if n, ∇I1, ∇I2, ∇I4, and
∇I5 are parallel.

Symmetry equivalence of Aκ
ab and Bκ

ab with κ a double index. We next turn our attention to the terms Aκ
ab

and Biκ
ab, where κ is a two-component multi-index in hyperelasticity or a single index in Cauchy elasticity.

First, A44
ab and B44

ab are expanded as follows

A44
ab = B44

ab = na|n n
n I4,b + na n

n
|n I4,b + na|b n

n I4,n + na (nn I4,n)|b . (4.50)

Using (4.26), the above expression simplifies to read

A44
ab = B44

ab = na|n n
n I4,b + c4 n

n
|n I4,a I4,b + c4,b I4,a n

n I4,n + c4 I4|ab n
n I4,n + c4 I4,a (nn I4,n)|b . (4.51)

Because the terms I4,a I4,b and I4|ab in (4.51) are symmetric, the symmetry equivalence is described by

A44
ab = B44

ab ≡ na|n n
n I4,b + c4,b I4,a n

n I4,n + c4 I4,a (nn I4,n)|b . (4.52)

Hence
A44

ab = B44
ab ≡ na|n n

n I4,b + (c4 I4,n n
n)|b I4,a , (4.53)

or
A44

ab = B44
ab ≡ na|n n

n I4,b + (nn n
n)|b I4,a . (4.54)

The symmetry of (4.54) is represented as follows

na|n n
n I4,b + (nn n

n)|b I4,a = nb|n n
n I4,a + (nn n

n)|a I4,b , (4.55)

which can be written in a more simplified form as[
na|n n

n − (nn n
n)|a

]
I4,b =

[
nb|n n

n − (nn n
n)|b

]
I4,a . (4.56)

Eq. (4.56) suggests that
na|n n

n − (nn n
n)|a = c̄3 I4,a , (4.57)

where c̄3 is a scalar function. Now, consider B41
ab . We proceed as in the case of B44

ab , take na = c1 I1,a, where
c1 is a scalar function, and neglect the symmetric terms. This yields the following expression

B41
ab ≡ na|n n

n I1,b + (nn n
n)|b I1,a . (4.58)
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From (4.57), we have
na|n n

n = c̄3 I4,a + (nn n
n)|a . (4.59)

Substituting (4.59) into (4.58) and taking I4,a = c41 I1,a yields

B41
ab ≡ c̄3 c41 I1,a I1,b + (nn n

n)|a I1,b + (nn n
n)|b I1,a , (4.60)

which is clearly symmetric. This means that if B44
ab is symmetric, then B41

ab will also be symmetric. Therefore,

B41
ab ≡ B44

ab . (4.61)

Similarly
B42

ab ≡ B44
ab , B45

ab ≡ B44
ab . (4.62)

Moreover, we may use (4.47) to rewrite A55
ab = B55

ab as follows

A55
ab = B55

ab = (2λ1 n
n na)|n I5,b + (2λ1 na n

n I5,n)|b , (4.63)

which is simplified as

A55
ab = B55

ab = na|n (2λ1 n
n) I5,b + na (2λ1 n

n)|n I5,b + na|b (2λ1 n
n I5,n) + na (2λ1 n

n I5,n)|b . (4.64)

Following an approach similar to that used in (4.51)–(4.56), one can show that the symmetry of A55
ab or B55

ab

results in
na|n (2λ1 n

n) = c̄4 I5,a + (2λ1 nn n
n)|a , (4.65)

and that the following symmetry equivalence also holds

B51
ab ≡ na|n (2λ1 n

n) I1,b + (2λ1 nn n
n)|b I1,a , (4.66)

where c̄4 is a scalar function. We substitute (4.65) into (4.66) to get

B51
ab ≡ c̄4 I5,a I1,b + (2λ1 nn n

n)|a I1,b + (2λ1 nn n
n)|b I1,a . (4.67)

Due to the functional dependence of I1 and I5, the right-hand side of (4.67) is symmetric. As a result, the
symmetry of B51

ab is equivalent to the symmetry of B55
ab , i.e.,

B51
ab ≡ B55

ab . (4.68)

The following results can be obtained in a similar manner

B52
ab ≡ B55

ab , B54
ab ≡ B55

ab . (4.69)

With respect to (4.47), B51
ab takes the following form

B51
ab = (2λ1 n

n na)|n I1,b + (2λ1 na n
n I1,n)|b , (4.70)

which can be further simplified to

B51
ab = 2λ1

[
(nn na)|n I1,b + (na n

n I1,n)|b

]
+ 2λ1,n n

n na I1,b + 2λ1,b na n
n I1,n , (4.71)

or
B51

ab = 2λ1 B
41
ab + 2λ1,n n

n na I1,b + 2λ1,b na n
n I1,n . (4.72)

Given that B41
ab is symmetric and n and ∇I1 are parallel, the following relation is implied

B51
ab ≡ 2λ1,b na n

n I1,n . (4.73)
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Now, let us use the relation (4.48) to write B61
ab as

B61
ab =

(
2

λ1
nn na

)
|n

I1,b +

(
2

λ1
na n

n I1,n

)
|b
. (4.74)

We can perform a similar manipulation for B61
ab to obtain

B61
ab ≡ −2λ1,b

λ2
1

na n
n I1,n . (4.75)

Hence,
B61

ab ≡ B51
ab , (4.76)

and similarly
B62

ab ≡ B52
ab , B64

ab ≡ B54
ab , B65

ab ≡ B55
ab . (4.77)

Therefore, although this part involves 16 universality constraints in Cauchy elasticity, only 6 of them, namely
those associated with the symmetries of the terms B44

ab , B
55
ab , B

15
ab , B

25
ab , B

14
ab and B24

ab are independent, and
these correspond to 6 independent universality constraints in hyperelasticity, as given by (4.23)3–(4.23)8.
Note that the symmetry of A45

ab is not an independent constraint in this case because with respect to (4.23)3,
(4.23)4, (4.23)9, (4.62)2 and (4.69)2, one can show that

A45
ab ≡ A44

ab +A55
ab , (4.78)

and hence there are 6 independent symmetry constraints in hyperelasticity in this case.
In conclusion, in Case 1 the symmetries of the terms Aκ

ab, where κ is a double index, in hyperelasticity
are equivalent to the symmetries of B1κ

ab , B
2κ
ab , B

4κ
ab , B

5κ
ab , and B6κ

ab , where κ is a single index, in Cauchy
elasticity.

Symmetry equivalence of Aκ
ab and Bκ

ab with κ a single index. Finally, we consider Aκ
ab and Biκ

ab, where κ
is a single index in hyperelasticity, or equivalently, κ = 0 in Cauchy elasticity. Since we have

A4
ab = B4

ab , A5
ab = B5

ab , (4.79)

we only need to prove that the symmetry of the remaining term in Cauchy elasticity, i.e., B6
ab, does not

admit an independent constraint. To this end, relation (4.48) is applied to (4.22)1 to obtain

B6
ab =

(
2

λ1
nn na

)
|nb

, (4.80)

which is expanded as

B6
ab =

(
2

λ1

)
|nb

nn na +

(
2

λ1

)
|n

(nn na)|b +

(
2

λ1

)
|b
(nn na)|n +

2

λ1
(nn na)|nb . (4.81)

Because the term (nn na)|nb is symmetric according to the symmetry of B4
ab, this term can be ignored. After

some simplifications, (4.81) can be expressed as

B6
ab ≡ −

(
2

λ2
1

)
|b
λ1,n n

n na −
1

λ2
1

(2λ1 na n
n)|nb . (4.82)

Taking (4.47) into account, we know that the term (2λ1 na n
n)|nb is equal to ℓna |nb, and hence is symmetric

due to the symmetry of B5
ab. So, the symmetry equivalence (4.82) takes the form

B6
ab ≡

4

λ3
1

λ1,b λ1,n n
n na . (4.83)
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To prove the symmetry of (4.83), it is enough to show that ∇λ1 and n are parallel. For this reason, attention
is given to (4.73). From this equation, the following term must be symmetric

λ1,b na n
n I1,n . (4.84)

Since nn I1,n ̸= 0, the symmetry of (4.84) indicates that ∇λ1 and n are parallel. Accordingly, (4.83)
is symmetric and the symmetry condition of the term B6

ab is satisfied. Therefore, B6
[ab] = 0 is not an

independent symmetry constraint in Cauchy elasticity in this case. As a result, the symmetries of the terms
Aκ

ab, where κ is a single index in hyperelasticity, and the symmetries of B4
ab, B

5
ab, and B6

ab in Cauchy elasticity
are equivalent.

So far, we have assumed that n, I1, I2, I4 and I5 are not constant. However, it can be readily shown that
if any of them or any combination thereof becomes constant (as in Family 5, where Ii are constant), the
equivalence still holds. For example, suppose that I4 is constant. Then,

A44
ab = B44

ab = 0 ,

B14
ab = B24

ab = B54
ab = B64

ab = 0 ,

A444
ab = B444

ab = 0 ,

A144
ab = B144

ab = B414
ab = 0 ,

A244
ab = B244

ab = B424
ab = 0 ,

A445
ab = B544

ab = B644
ab = B445

ab = 0 ,

B114
ab = B214

ab = B154
ab = B514

ab = B614
ab = B224

ab = B524
ab = B624

ab = B545
ab = B645

ab = 0 ,

(4.85)

and accordingly,

A14
ab ≡ B41

ab ,

A24
ab ≡ B42

ab ,

A45
ab ≡ B45

ab ,

A114
ab ≡ B411

ab ,

A124
ab ≡ B412

ab ,

A145
ab ≡ B415

ab ,

A224
ab ≡ B422

ab ,

A245
ab ≡ B425

ab ,

(4.86)

while the remaining symmetry relations remain valid, thereby preserving the equivalence.
In summary, for incompressible transversely isotropic solids in Case 1 (when n (x) and ∇I4 are parallel),

the universality constraints in Cauchy elasticity and those in hyperelasticity are equivalent, and their material
preferred directions are identical.

4.2.2 Case 2: n (x) and ∇I4 are orthogonal

As discussed earlier, the symmetries of the terms A444
ab and B444

ab are also maintained when n and ∇I4 are
orthogonal. In hyperelasticity, the term A445

ab is then written as

A445
ab = (na n

n I5,n + ℓna I4,n) I4,b , (4.87)

which is symmetric only when
na n

n I5,n + ℓna I4,n = c̄5 I4,a , (4.88)

or
ℓna I4,n = c̄5 I4,a − na n

n I5,n , (4.89)
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where c̄5 is a scalar function. We first assume that nn I5,n ̸= 0 and substitute (4.89) and (4.25) into (4.18)16
to represent A455

ab as follows
A455

ab = λ̄5 I5,b I4,a + c̄5 I4,b I5,a , (4.90)

which is symmetric when ∇I4 and ∇I5 are parallel (note that the very special solution in which λ̄5 = c̄5 is
excluded because it is not valid for any family of universal deformations). Another solution to the symmetry
of (4.87) is obtained when nn I5,n = 0 and ℓna I4,n = λ̄4 I4,a, where λ̄4 is the associated eigenvalue. In this
case, the term A455

ab reads
A455

ab = λ̄5 I5,a I4,b + λ̄4 I4,a I5,b , (4.91)

which tells us that either λ̄4 = λ̄5, or ∇I4 and ∇I5 are parallel. As a result, in hyperelasticity when n ⊥ ∇I4,
the symmetries of A445

ab and A455
ab hold for only two scenarios: 1) when ∇I4 and ∇I5 are parallel, and 2)

when n is orthogonal to ∇I5, with ∇I4 and ∇I5 both being independent eigenvectors of ℓna associated with
the same eigenvalue.

Now consider B445
ab , B544

ab and B554
ab in Cauchy elasticity. Since n and ∇I4 are not parallel, B445

ab =
na I4,b n

n I5,n is symmetric if and only if n is orthogonal to ∇I5 (nn I5,n = 0). Moreover, the symmetry of
B544

ab implies that ∇I4 is also an eigenvector of ℓna . Consequently, B
554
ab becomes

B554
ab = λ̄5 I5,a I4,b + λ̄4 I4,a I5,b . (4.92)

The symmetry constraint associated with (4.92) has two solutions: 1) ∇I4 and ∇I5 are parallel, and 2)
λ̄4 = λ̄5 and ∇I4 and ∇I5 are not parallel while both are orthogonal to n. These two solutions are clearly the
same as those obtained for the symmetry conditions of A445

ab and A455
ab . Let us first address the equivalence

for the first scenario in which ∇I4 and ∇I5 are parallel.

Equivalence of Aκ
ab and Bκ

ab with κ a triple index. We know that n is orthogonal to ∇I4, and that ∇I4
and ∇I5 are parallel. It immediately follows that n ⊥ ∇I5 and ℓna I4,n = λ̄5 I4,a. Thus B

445
ab = B455

ab = 0, and
the terms

A445
ab = B544

ab = ℓna I4,n I4,b = λ̄5 I4,a I4,b ,

A455
ab = B554

ab = ℓna (I5,n I4,b + I5,b I4,n) = λ̄5 (I5,a I4,b + I4,a I5,b) ,
(4.93)

are symmetric. Therefore, we have{
B445

ab ,B544
ab ,B455

ab ,B554
ab

}
≡

{
A445

ab ,A455
ab

}
. (4.94)

Proceeding further and with reference to (3.14)2, the terms A144
ab and A114

ab take the following form

A144
ab = bna I4,n I4,b + na n

n I1,n I4,b ,

A114
ab = bna I4,n I1,b + λ1 I1,a I4,b + na n

n I1,n I1,b .
(4.95)

Regarding (4.95)1, the constraint A144
[ab] = 0 gives bna I4,n = c̄6 I4,a − na n

n I1,n which can be substituted into

(4.95)2 to yield
A114

ab = c̄6 I4,a I1,b + λ1 I1,a I4,b , (4.96)

where c̄6 is a scalar function. Enforcing the symmetry of (4.96) requires ∇I1 and ∇I4 to be parallel, which
is the only possible solution. On the other hand, the symmetry of B441

ab = na I4,b n
n I1,n is preserved if

and only if nn I1,n = 0, since n and ∇I4 are not parallel. B144
ab is also symmetric only when bna I4,n and

I4,a are parallel. We therefore conclude that a functional dependence between I1 and I4 constitutes a
unique condition ensuring the symmetries of B144

ab and B441
ab . Given this solution, the terms B114

ab and B411
ab

are symmetric as well. Since the symmetries in both sets,
{
B441

ab ,B144
ab ,B114

ab ,B411
ab

}
and

{
A114

ab ,A144
ab

}
, are

preserved if and only if ∇I1 and ∇I4 are parallel, the corresponding symmetry constraints are equivalent,
i.e., {

B441
ab ,B144

ab ,B114
ab ,B411

ab

}
≡

{
A114

ab ,A144
ab

}
. (4.97)
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Following the same approach, one can show that{
B224

ab ,B422
ab ,B244

ab ,B442
ab

}
≡

{
A224

ab ,A244
ab

}
,{

B115
ab ,B511

ab ,B155
ab ,B551

ab

}
≡

{
A115

ab ,A155
ab

}
,{

B225
ab ,B522

ab ,B255
ab ,B552

ab

}
≡

{
A225

ab ,A255
ab

}
,

(4.98)

which are equivalent to the functional dependence of the pairs {I2, I4}, {I1, I5} and {I2, I5}, respectively.
Thus, ∇Ii (i = 1, 2, 4, 5) are mutually parallel and orthogonal to n. The symmetry constraints corresponding
to the remaining terms in hyperelasticity,

{
A124

ab ,A125
ab ,A145

ab ,A245
ab

}
, as well as those corresponding to the

similar ones in Cauchy elasticity including B124
ab , B214

ab , B412
ab , B125

ab ,B215
ab , B512

ab , B145
ab , B415

ab , B514
ab , B245

ab , B425
ab ,

and B524
ab are then identically satisfied.

To complete this discussion, we need to investigate the additional terms in Cauchy elasticity, i.e., B611
ab ,

B622
ab , B644

ab , B655
ab , B612

ab , B614
ab , B615

ab , B624
ab , B625

ab and B645
ab . Let us use (3.14)4 to simplify ℓ̄na Ii,n (i = 1, 2, 4, 5)

as follows

ℓ̄na Ii,n = nn cca nc Ii,n + na c
n
c n

c Ii,n = nn Ii,n c
c
a nc + na

1

λ1
Ii,c n

c , (4.99)

which according to the orthogonality of n and ∇Ii leads to

ℓ̄na Ii,n = 0 . (4.100)

Consequently, with reference to (4.22)6–(4.22)15, we see that the additional symmetry constraint terms
vanish and do not impose further constraints beyond the existing ones. Therefore, Aκ

ab and Bκ
ab, where κ is

a triple index, are equivalent.
Finally, it is worth noting that by following the same calculation as used in (4.100), one also obtains

ℓna Ii,n = 0. As a consequence, the symmetry equivalences in (4.94), (4.97) and (4.98) can be written more
precisely as

A114
ab = B114

ab ,

A115
ab = B115

ab ,

A144
ab = B144

ab ,

A155
ab = B155

ab ,

A224
ab = B224

ab ,

A225
ab = B225

ab ,

A244
ab = B244

ab ,

A255
ab = B255

ab ,

A445
ab = B445

ab = 0 ,

A455
ab = B455

ab = 0 .

(4.101)

Equivalence of Aκ
ab and Bκ

ab with κ a double index. In Case 2, we know that

B44
ab = A44

ab = (na n
n)|n I4,b ,

B55
ab = A55

ab = ℓna |n I5,b .
(4.102)

Since ∇I1 and ∇I4 are parallel, the symmetry of B41
ab = (na n

n)|n I1,b is equivalent to that of B44
ab . Likewise,

we have

B51
ab ≡ B55

ab ,

B42
ab ≡ B44

ab ,

B52
ab ≡ B55

ab ,

B45
ab ≡ B44

ab ,

B54
ab ≡ B55

ab .

(4.103)
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Subsequently, with reference to (4.23)5–(4.23)9, the following relations hold between the hyperelasticity and
the Cauchy elasticity constraints

A14
ab ≡ B14

ab + B44
ab ,

A15
ab ≡ B15

ab + B55
ab ,

A24
ab ≡ B24

ab + B44
ab ,

A25
ab ≡ B25

ab + B55
ab ,

A45
ab ≡ A44

ab +A55
ab ≡ B44

ab + B55
ab .

(4.104)

Thus, in hyperelasticity there are six independent symmetry constraints namely A44
[ab] = 0, A55

[ab] = 0,

A14
[ab] = 0, A15

[ab] = 0, A24
[ab] = 0 and A25

[ab] = 0. These correspond to six independent symmetry constraints

in Cauchy elasticity, B44
[ab] = 0, B55

[ab] = 0, B14
[ab] = 0, B15

[ab] = 0, B24
[ab] = 0, and B25

[ab] = 0, indicating that the
two sets are equivalent.

Because A4
ab = B4

ab and A5
ab = B5

ab, we conclude that in Case 2, all symmetry constraints in hyperelastic-
ity are equivalent to the corresponding ones in Cauchy elasticity. In other words, the universal deformations
and universal material preferred directions in Cauchy elasticity are subsets of those in hyperelasticity. In
order to complete the proof, it is necessary to show that the symmetries of the extra terms B6

ab, B
61
ab , B

62
ab ,

B64
ab and B65

ab hold trivially. These terms in Cauchy elasticity, if not trivially symmetric, can only impose
further constraints on the existing universal deformations and material preferred directions in hyperelasticity
given in [Yavari and Goriely, 2021]. Following [Yavari and Goriely, 2021, 2023], we find that for all families
of universal deformations of incompressible transversely isotropic hyperelastic solids in which n ⊥ ∇I4, the
following relations hold

ℓ̄na |n = ℓna |n = 0 . (4.105)

Concerning (4.22)1–(4.22)5, it follows that B
6
ab = B61

ab = B62
ab = B64

ab = B65
ab = 0, and therefore the universality

constraints in hyperelasticity and Cauchy elasticity in Case 2 are equivalent.
As outlined previously, in addition to Case 1 and Case 2, there remains one other possibility to be

addressed. This possibility indicates that∇I4 and∇I5 are perpendicular to n, and that both are eigenvectors
of ℓna associated with the same eigenvalue while they are not parallel. With reference to [Yavari and Goriely,
2021], one observes that Ii (i = 1, 2, 4, 5) are functionally dependent for all families of universal deformations,
and thus this case is not an admissible solution in hyperelasticity. Thus, let us investigate it for Cauchy
elasticity. If a solution satisfies the symmetries of the Cauchy elasticity terms, then the Cauchy elasticity
constraints of (4.23) and (4.24) are all satisfied, implying that the hyperelasticity symmetry constraints also
hold. Therefore, this solution must also be valid for hyperelasticity, which leads to a contradiction. As a
result, this case is inadmissible in both hyperelasticity and Cauchy elasticity.

In summary, we have proved the following result.

Proposition 4.2. The universal deformations and material preferred directions of incompressible trans-
versely isotropic Cauchy elasticity are identical to those of incompressible transversely isotropic hyperelastic-
ity.

5 Universality Constraints in Orthotropic Elasticity

At each point in the reference configuration, an orthotropic solid exhibits reflection symmetry with respect
to three mutually perpendicular planes. Accordingly, the orthotropic directions at a point X are defined by
a set of three vectors N1 (X), N2 (X) and N3 (X) that are mutually orthonormal with respect to the metric
tensor G. In hyperelasticity, the energy function of an orthotropic solid is described by seven independent
invariants, denoted as I1, I2, I3, I4, I5, I6 and I7. The first three invariants are defined in (2.5). The
remaining invariants are introduced as follows

I4 = N1 ·C ·N1 , I5 = N1 ·C2 ·N1 , I6 = N2 ·C ·N2 , I7 = N2 ·C2 ·N2 . (5.1)
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For orthotropic hyperelastic solids, the second Piola–Kirchhoff stress and the Cauchy stress are given,
respectively, by [Yavari and Goriely, 2021, 2023]

S =2W1 G
♯ + 2W2 (I2 C

−1 − I3 C
−2) + 2W3 I3 C

−1

+ 2W4 (N1 ⊗N1) + 2W5 [N1 ⊗ (C ·N1) + (C ·N1)⊗N1]

+ 2W6 (N2 ⊗N2) + 2W7 [N2 ⊗ (C ·N2) + (C ·N2)⊗N2] ,

(5.2)

and

σ =
2√
I3

W1 b
♯ +

2√
I3

(I2 W2 + I3 W3)g
♯ − 2

√
I3 W2 c

♯

+
2√
I3

W4 (n1 ⊗ n1) +
2√
I3

W5 [n1 ⊗ (b · n1) + (b · n1)⊗ n1]

+
2√
I3

W6 (n2 ⊗ n2) +
2√
I3

W7 [n2 ⊗ (b · n2) + (b · n2)⊗ n2] ,

(5.3)

where Wi =
∂W

∂Ii
(i = 1, · · · , 7), n1 = F ·N1 and n2 = F ·N2. In components, the Cauchy stress reads

σab =
2√
I3

[W1 b
ab + (I2 W2 + I3 W3) g

ab − I3 W2 c
ab

+W4 n
a
1 n

b
1 +W5 (n

a
1 b

bc nd
1 gcd + nb

1 b
ac nd

1 gcd)

+W6 n
a
2 n

b
2 +W7 (n

a
2 b

bc nd
2 gcd + nb

2 b
ac nd

2 gcd)] ,

(5.4)

where na
1 = F a

A NA
1 and na

2 = F a
A NA

2 .
For orthotropic Cauchy elastic solids, we have the following representation for the second Piola-Kirchhoff

stress tensor [Yavari and Goriely, 2025]

S =a0 G
♯ + a1 C

♯ + a2 C
2♯ + a3 (N1 ⊗N1) + a4 [N1 ⊗ (C ·N1) + (C ·N1)⊗N1]

+ a5 [N1 ⊗ (C2 ·N1) + (C2 ·N1)⊗N1]

+ a6 (N2 ⊗N2) + a7 [N2 ⊗ (C ·N2) + (C ·N2)⊗N2]

+ a8 [N2 ⊗ (C2 ·N2) + (C2 ·N2)⊗N2] ,

(5.5)

where ai (I1, · · · , I7), i = 0, · · · , 8 are the response functions. The Cauchy stress tensor is written as

σ =ã0 g
♯ + ã1 b

♯ + ã2 c
♯ + ã3 (n1 ⊗ n1) + ã4 [n1 ⊗ (b · n1) + (b · n1)⊗ n1]

+ ã5 [n1 ⊗ (c · n1) + (c · n1)⊗ n1]

+ ã6 (n2 ⊗ n2) + ã7 [n2 ⊗ (b · n2) + (b · n2)⊗ n2]

+ ã8 [n2 ⊗ (c · n2) + (c · n2)⊗ n2] ,

(5.6)

where ãi (I1, · · · , I7) , i = 0, · · · , 8 are the response functions.
The second Piola–Kirchhoff stress tensor for incompressible orthotropic hyperelastic solids is represented

as [Yavari and Goriely, 2023, 2021]

S =− pC−1 + 2W1 G
♯ + 2W2 (I2 C

−1 −C−2)

+ 2W4 (N1 ⊗N1) + 2W5 [N1 ⊗ (C ·N1) + (C ·N1)⊗N1]

+ 2W6 (N2 ⊗N2) + 2W7 [N2 ⊗ (C ·N2) + (C ·N2)⊗N2] ,

(5.7)

where W = W (I1, I2, I4, I5, I6, I7). Moreover, the Cauchy stress reads

σ =− pg♯ + 2W1 b
♯ − 2W2 c

♯ + 2W4 (n1 ⊗ n1)

+ 2W5 [n1 ⊗ (b · n1) + (b · n1)⊗ n1] + 2W6 (n2 ⊗ n2)

+ 2W7 [n2 ⊗ (b · n2) + (b · n2)⊗ n2] .

(5.8)
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In components, it is written as

σab = −p gab + 2W1 b
ab − 2W2 c

ab + 2W4 n
a
1 n

b
1 + 2W5 ℓ

ab
1 + 2W6 n

a
2 n

b
2 + 2W7 ℓ

ab
2 , (5.9)

where ℓab1 = na
1 b

bc nd
1 gcd+nb

1 b
ac nd

1 gcd and ℓab2 = na
2 b

bc nd
2 gcd+nb

2 b
ac nd

2 gcd. For incompressible orthotropic
Cauchy elastic solids, the second Piola–Kirchhoff stress tensor is written as [Spencer, 1970, Boehler, 1979,
1987]

S =− pC−1 + ā0 G
♯ + ā1 C

♯ + ā2 (N1 ⊗N1) + ā4 [N1 ⊗ (C ·N1) + (C ·N1)⊗N1]

+ ā5 [N1 ⊗ (C−1 ·N1) + (C−1 ·N1)⊗N1]

+ ā6 (N2 ⊗N2) + ā7 [N2 ⊗ (C ·N2) + (C ·N2)⊗N2]

+ ā8 [N2 ⊗ (C−1 ·N2) + (C−1 ·N2)⊗N2] ,

(5.10)

where āi (I1, I2, I4, I5, I6, I7), i = 0, 1, 2, 4, 5, 6, 7, 8 are the response functions. Thus, one can write the
Cauchy stress tensor for incompressible Cauchy elastic solids as

σ =− pg♯ + α1 b
♯ + α2 c

♯ + α4 (n1 ⊗ n1) + α5 [n1 ⊗ (b · n1) + (b · n1)⊗ n1]

+ α6 [n1 ⊗ (c · n1) + (c · n1)⊗ n1]

+ α7 (n2 ⊗ n2) + α8 [n2 ⊗ (b · n2) + (b · n2)⊗ n2]

+ α9 [n2 ⊗ (c · n2) + (c · n2)⊗ n2] ,

(5.11)

where αi = αi (I1, I2, I4, I5, I6, I7), i = 1, 2, 4, 5, 6, 7, 8, 9 are arbitrary response functions.

5.1 Compressible orthotropic solids

Let us write the Cauchy stress (5.6) in components as

σab = α1 g
ab + α2 b

ab + α3 c
ab + α4 n

a
1 n

b
1 + α5 ℓ

ab
1 + α6 ℓ̄

ab
1 + α7 n

a
2 n

b
2 + α8 ℓ

ab
2 + α9 ℓ̄

ab
2 , (5.12)

where ℓ̄ab1 = na
1 c

bc nd
1 gcd+nb

1 c
ac nd

1 gcd and ℓ̄ab2 = na
2 c

bc nd
2 gcd+nb

2 c
ac nd

2 gcd, and αi (I1, I2, I3, I4, I5, I6, I7) , i =
1, · · · , 9 are arbitrary response functions. Thus, the equilibrium equations read

α2 b
ab

|b + α3 c
ab

|b + α4

(
na
1 n

b
1

)
|b + α5 ℓ

ab
1 |b + α6 ℓ̄

ab
1 |b + α7

(
na
2 n

b
2

)
|b + α8 ℓ

ab
2 |b + α9 ℓ̄

ab
2 |b

+ α1,i Ii,b g
ab + α2,i Ii,b b

ab + α3,i Ii,b c
ab + α4,i Ii,b (n

a
1 n

b
1) + α5,i Ii,b ℓ

ab
1 + α6,i Ii,b ℓ̄

ab
1

+ α7,i Ii,b (n
a
2 n

b
2) + α8,i Ii,b ℓ

ab
2 + α9,i Ii,b ℓ̄

ab
2 = 0 ,

(5.13)
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where i = 1, · · · , 7. Therefore, the universality constraints are written as

bab|b = cab|b = 0 ,(
na
1 n

b
1

)
|b = 0 ,(

na
2 n

b
2

)
|b = 0 ,

ℓab1 |b = 0 ,

ℓab2 |b = 0 ,

Ii,b g
ab = 0 ,

Ii,b b
ab = 0 ,

Ii,b c
ab = 0 ,

Ii,b n
a
1 n

b
1 = 0 ,

Ii,b n
a
2 n

b
2 = 0 ,

Ii,b ℓ
ab
1 = 0 ,

Ii,b ℓ
ab
2 = 0 ,

ℓ̄ab1 |b = 0 ,

ℓ̄ab2 |b = 0 ,

Ii,b ℓ̄
ab
1 = 0 ,

Ii,b ℓ̄
ab
2 = 0 .

(5.14)

The constraints (5.14)1–(5.14)12 coincide with those obtained for homogeneous compressible orthotropic
hyperelastic solids [Yavari and Goriely, 2023, 2021]. Thus, to prove that the universality constraints in
Cauchy elasticity and hyperelasticity are equivalent, it is sufficient to show that the extra constraints in
Cauchy elasticity, i.e., (5.14)13–(5.14)16, are trivially satisfied.

Considering (5.14)6, one concludes that Ii (i = 1, · · · , 7) are constant. Consequently, (5.14)7–(5.14)12
hold identically. Moreover, the forms of the constraints (5.14)2, (5.14)3, and (5.14)4, (5.14)5 are identical
to (4.14)2 and (4.14)3, respectively. Therefore, the constraints (5.14)1–(5.14)5 are the same as those for
transversely isotropic solids. This shows that universal deformations are homogeneous, and N1 and N2 are
constant unit vectors. By combining these results, one can show that

ℓ̄ab1 |b = ℓ̄ab2 |b = Ii,b ℓ̄
ab
1 = Ii,b ℓ̄

ab
2 = 0 . (5.15)

Hence, the extra constraints in Cauchy elasticity are satisfied identically. In summary, we have proved the
following result.

Proposition 5.1. The universal deformations and material preferred directions of compressible orthotropic
Cauchy elasticity are identical to those of compressible orthotropic hyperelasticity.

5.2 Incompressible orthotropic solids

The derivation of the universality constraints for incompressible orthotropic solids proceeds in precisely the
same manner as that employed for incompressible isotropic solids (see §3.2) and transversely isotropic solids
(see §4.2): the corresponding Cauchy stress tensors, given in (5.8) for hyperelastic solids and in (5.11) for
Cauchy elastic solids, are substituted into the equilibrium equations (2.10) to determine p|a as

p|b g
ab = 2

[
W1 b

ab −W2 c
ab +W4 n

a
1 n

b
1 +W5 ℓ

ab
1 +W6 n

a
2 n

b
2 +W7 ℓ

ab
2

]
|b , (5.16)

for hyperelastic solids, and

p|b g
ab =

[
α1 b

ab + α2 c
ab + α4 n

a
1 n

b
1 + α5 ℓ

ab
1 + α6 ℓ̄

ab
1 + α7 n

a
2 n

b
2 + α8 ℓ

ab
2 + α9 ℓ̄

ab
2

]
|b , (5.17)
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for Cauchy elastic solids. Upon imposing the integrability condition p|ab = p|ba, the universality constraints
are then determined.

In hyperelasticity, we obtain

p|ab =
∑
κ

Aκ
ab Wκ . (5.18)

Recall that p|ab = p|ba if and only if all the coefficients of partial derivatives of W are symmetric, that is,
Aκ

ab = Aκ
ba. As discussed in [Yavari and Goriely, 2023] and [Yavari and Goriely, 2021], the matrix Aκ

ab

contains 83 terms that can be categorized as follows:

i) The nine terms that already appear in the isotropic hyperelastic case:

κ ∈ Kiso = {1, 2, 11, 22, 12, 111, 222, 112, 122} . (5.19)

ii) 25 terms associated with N1:

κ ∈ Ki = {4, 5, 44, 55, 14, 15, 24, 25, 45, 444, 555, 114, 115, 124, 125,
144, 145, 155, 224, 225, 244, 245, 255, 445, 455} .

(5.20)

iii) 25 terms associated with N2:

κ ∈ Kii = {6, 7, 66, 77, 16, 17, 26, 27, 67, 666, 777, 116, 117, 126, 127,
166, 167, 177, 226, 227, 266, 267, 277, 667, 677} .

(5.21)

iv) 24 terms corresponding to coupling of N1 and N2:

κ ∈ Kiii = {46, 47, 56, 57, 146, 147, 156, 157, 246, 247, 256, 257, 446, 447,
456, 457, 556, 557, 466, 467, 566, 567, 477, 577} .

(5.22)

The terms Ki and Kii are equivalent in form to (4.17) and (4.18) in transversely isotropic hyperelasticity.
This leads to the following conclusion for orthotropic hyperelastic solids [Yavari and Goriely, 2021, 2023] as
well as orthotropic Cauchy elastic solids: the material preferred directions N1, N2 and N3 are universal for
orthotropic solids if each direction is universal for transversely isotropic solids, and if the pairs (N1,N2),
(N1,N3) and (N2,N3) satisfy the Kiii constraints in hyperelasticity as well as the corresponding ones in
Cauchy elasticity (we can extend this statement to Cauchy elasticity because we have shown that for incom-
pressible transversely isotropic solids, the universality constraints in hyperelasticity and Cauchy elasticity
are equivalent).

Let n = n1 and m = n2, and assume that Ii (i = 1, 2, 4, 5, 6, 7) are not constant. Since n and m
should satisfy the corresponding constraints of transversely isotropic solids, each of them has the same two
possibilities discussed in §4.2 (recall that each set gives 63 universality constraints in Cauchy elasticity).
Taken together, these give rise to three distinct cases: 1) n and ∇Ii (i = 1, 2, 4, 5, 6, 7) are mutually parallel
and orthogonal to m, 2) ∇Ii (i = 1, 2, 4, 5, 6, 7) are mutually parallel and orthogonal to both n and m,
and 3) n, m and ∇Ii (i = 1, 2, 4, 5, 6, 7) are all parallel. From the universal deformations and material
preferred directions for orthotropic hyperelasticity reported in [Yavari and Goriely, 2021, 2023], it can be
recognized that the third case is not valid in hyperelasticity. Therefore, in order to investigate a possible
equivalence between the universality constraints in hyperelasticity and those in Cauchy elasticity, we need
to study the terms corresponding to coupling N1 and N2, taking only the first two possibilities into account.
Furthermore, note that in transversely isotropic solids, the symmetries of the terms related to N1 require
that ∇I1, ∇I2, ∇I4 and ∇I5 be parallel. A similar argument can be applied to the symmetries of the terms
corresponding to N2 as well, resulting in the functional dependence of I1, I2, I6 and I7. As a consequence,
∇Ii (i = 1, 2, 4, 5, 6, 7) in both cases are functionally dependent.
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We first represent the terms Aκ
ab associated with Kiii as follows [Yavari and Goriely, 2021, 2023]

A46
ab = (na n

n)|n I6,b + (na n
n I6,n)|b + (ma m

n)|n I4,b + (ma m
n I4,n)|b ,

A47
ab = (na n

n)|n I7,b + (na n
n I7,n)|b + Kn

a |n I4,b + (Kn
a I4,n)|b ,

A56
ab = Ln

a |n I6,b + (Ln
a I6,n)|b + (ma m

n)|n I5,b + (ma m
n I5,n)|b ,

A57
ab = Ln

a |n I7,b + (Ln
a I7,n)|b + Kn

a |n I5,b + (Kn
a I5,n)|b ,

(5.23)

and

A146
ab = bna (I4,n I6,b + I4,b I6,n) ,

A147
ab = bna (I4,n I7,b + I4,b I7,n) ,

A156
ab = bna (I5,n I6,b + I5,b I6,n) ,

A157
ab = bna (I5,n I7,b + I5,b I7,n) ,

A246
ab = cna (I4,n I6,b + I4,b I6,n) ,

A247
ab = cna (I4,n I7,b + I4,b I7,n) ,

A256
ab = cna (I5,n I6,b + I5,b I6,n) ,

A257
ab = cna (I5,n I7,b + I5,b I7,n) ,

A446
ab = na n

n (I4,n I6,b + I4,b I6,n) ,

A447
ab = na n

n (I4,n I7,b + I4,b I7,n) ,

A456
ab = na n

n (I5,n I6,b + I5,b I6,n) + Ln
a (I4,n I6,b + I4,b I6,n) ,

A457
ab = na n

n (I5,n I7,b + I5,b I7,n) + Ln
a (I4,n I7,b + I4,b I7,n) ,

A466
ab = ma m

n (I4,n I6,b + I4,b I6,n) ,

A467
ab = ma m

n (I4,n I7,b + I4,b I7,n) + Kn
a (I4,n I6,b + I4,b I6,n) ,

A477
ab = Kn

a (I4,n I7,b + I4,b I7,n) ,

A556
ab = Ln

a (I5,n I6,b + I5,b I6,n) ,

A557
ab = Ln

a (I5,n I7,b + I5,b I7,n) ,

A566
ab = ma m

n (I5,n I6,b + I5,b I6,n)

A567
ab = ma m

n (I5,n I7,b + I5,b I7,n) + Kn
a (I5,n I6,b + I5,b I6,n)

A577
ab = Kn

a (I5,n I7,b + I5,b I7,n) ,

(5.24)

where Lab = ℓab1 and Kab = ℓab2 .
In Cauchy elasticity, p|ab is expressed as

p|ab =
∑
κ

(
B1κ

ab α1κ + B2κ
ab α2κ + B4κ

ab α4κ + B5κ
ab α5κ + B6κ

ab α6κ + B7κ
ab α7κ + B8κ

ab α8κ + B9κ
ab α9κ

)
, (5.25)

where B1κ
ab , B

2κ
ab , B

4κ
ab , B

5κ
ab , B

6κ
ab , B

7κ
ab , B

8κ
ab and B9κ

ab are the matrices of coefficients of α1κ, α2κ, α4κ, α5κ,
α6κ, α7κ, α8κ and α9κ, respectively (αiκ = ∂αi/∂Iκ, where κ is a multi-index). It can be shown that there
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are 44 terms in Cauchy elasticity corresponding to coupling of N1 and N2, which are

B46
ab = (na n

n)|n I6,b + (na n
n I6,n)|b ,

B47
ab = (na n

n)|n I7,b + (na n
n I7,n)|b ,

B56
ab = Ln

a |n I6,b + (Ln
a I6,n)|b ,

B57
ab = Ln

a |n I7,b + (Ln
a I7,n)|b ,

B66
ab = L̄n

a |n I6,b +
(
L̄n
a I6,n

)
|b ,

B67
ab = L̄n

a |n I7,b +
(
L̄n
a I7,n

)
|b ,

B74
ab = (ma m

n)|n I4,b + (ma m
n I4,n)|b ,

B75
ab = (ma m

n)|n I5,b + (ma m
n I5,n)|b ,

B84
ab = Kn

a |n I4,b + (Kn
a I4,n)|b ,

B85
ab = Kn

a |n I5,b + (Kn
a I5,n)|b ,

B94
ab = K̄n

a |n I4,b +
(
K̄n
a I4,n

)
|b ,

B95
ab = K̄n

a |n I5,b +
(
K̄n
a I5,n

)
|b ,

(5.26)
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and

B146
ab = bna (I6,n I4,b + I6,b I4,n) ,

B147
ab = bna (I4,n I7,b + I4,b I7,n) ,

B156
ab = bna (I5,n I6,b + I5,b I6,n) ,

B157
ab = bna (I5,n I7,b + I5,b I7,n) ,

B246
ab = cna (I6,n I4,b + I6,b I4,n) ,

B247
ab = cna (I4,n I7,b + I4,b I7,n) ,

B256
ab = cna (I5,n I6,b + I5,b I6,n) ,

B257
ab = cna (I5,n I7,b + I5,b I7,n) ,

B446
ab = na n

n (I4,n I6,b + I4,b I6,n) ,

B447
ab = na n

n (I4,n I7,b + I4,b I7,n) ,

B456
ab = na n

n (I5,n I6,b + I5,b I6,n) ,

B457
ab = na n

n (I5,n I7,b + I5,b I7,n) ,

B546
ab = Ln

a (I4,n I6,b + I4,b I6,n) ,

B547
ab = Ln

a (I4,n I7,b + I4,b I7,n) ,

B556
ab = Ln

a (I5,n I6,b + I5,b I6,n) ,

B557
ab = Ln

a (I5,n I7,b + I5,b I7,n) ,

B646
ab = L̄n

a (I4,n I6,b + I4,b I6,n) ,

B647
ab = L̄n

a (I4,n I7,b + I4,b I7,n) ,

B656
ab = L̄n

a (I5,n I6,b + I5,b I6,n) ,

B657
ab = L̄n

a (I5,n I7,b + I5,b I7,n) ,

B746
ab = ma m

n (I4,n I6,b + I4,b I6,n) ,

B747
ab = ma m

n (I4,n I7,b + I4,b I7,n) ,

B756
ab = ma m

n (I5,n I6,b + I5,b I6,n) ,

B757
ab = ma m

n (I5,n I7,b + I5,b I7,n) ,

B846
ab = Kn

a (I4,n I6,b + I4,b I6,n) ,

B847
ab = Kn

a (I4,n I7,b + I4,b I7,n) ,

B856
ab = Kn

a (I5,n I6,b + I5,b I6,n) ,

B857
ab = Kn

a (I5,n I7,b + I5,b I7,n) ,

B946
ab = K̄n

a (I4,n I6,b + I4,b I6,n) ,

B947
ab = K̄n

a (I4,n I7,b + I4,b I7,n) ,

B956
ab = K̄n

a (I5,n I6,b + I5,b I6,n) ,

B957
ab = K̄n

a (I5,n I7,b + I5,b I7,n) ,

(5.27)

where L̄ab = ℓ̄ab1 and K̄ab = ℓ̄ab2 . Consequently, the following relations are established between the two groups
of terms

A46
ab = B46

ab + B74
ab ,

A47
ab = B47

ab + B84
ab ,

A56
ab = B56

ab + B75
ab ,

A57
ab = B57

ab + B85
ab ,

(5.28)
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and

A146
ab = B146

ab ,

A147
ab = B147

ab ,

A156
ab = B156

ab ,

A157
ab = B157

ab ,

A246
ab = B246

ab ,

A247
ab = B247

ab ,

A256
ab = B256

ab ,

A257
ab = B257

ab ,

A446
ab = B446

ab ,

A447
ab = B447

ab ,

A456
ab = B456

ab + B546
ab ,

A457
ab = B457

ab + B547
ab ,

A466
ab = B746

ab ,

A467
ab = B747

ab + B846
ab ,

A477
ab = B847

ab ,

A556
ab = B556

ab ,

A557
ab = B557

ab ,

A566
ab = B756

ab ,

A567
ab = B757

ab + B856
ab ,

A577
ab = B857

ab .

(5.29)

In what follows, the symmetry equivalence between the terms in hyperelasticity given in (5.23) and (5.24),
and those in Cauchy elasticity represented by (5.26) and (5.27) for the two possible cases is examined
separately.

5.2.1 Case 1: n (x) and ∇Ii are mutually parallel and orthogonal to m (x)

This section discusses the equivalence between the symmetry constraint terms in hyperelasticity and those in
Cauchy elasticity, when n and ∇Ii (i = 1, 2, 4, 5, 6, 7) are parallel to each other and orthogonal to m (because
of the existing symmetry, this case is equivalent to that in which m and ∇Ii (i = 1, 2, 4, 5, 6, 7) are parallel
to each other and orthogonal to n).

We first investigate the symmetry equivalence between the terms Aκ
ab and Bκ

ab when κ is a three-
component index. Regarding the relations (5.29) and (5.27), only the terms appearing in (5.29)11, (5.29)12,
(5.29)14 and (5.29)19 need to be examined. Since n, ∇I5, ∇I6, and ∇I7 are parallel, the symmetry conditions
for the terms B456

ab and B457
ab are trivially satisfied, and thus

A456
[ab] = B546

[ab] = 0 , A457
[ab] = B547

[ab] = 0 , (5.30)

or equivalently
A456

ab ≡ B546
ab , A457

ab ≡ B547
ab . (5.31)

Besides, owing to the orthogonality of m to ∇I4, ∇I5 and ∇I7, it follows that B
747
ab = B757

ab = 0, which leads
to

A467
ab ≡ B846

ab , A567
ab ≡ B856

ab . (5.32)

The remaining terms in Cauchy elasticity are in one-to-one correspondence with those in hyperelasticity, as
represented in (5.29). It remains to show that the symmetries of the extra terms in Cauchy elasticity, namely
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B646
ab , B647

ab , B656
ab , B657

ab , B946
ab , B947

ab , B956
ab and B957

ab hold identically. Knowing that n is an eigenvector of c,

one may write L̄n
a =

2

λ1
na n

n (see (4.48)), and hence

B646
ab =

2

λ1
I4,n n

n na I6,b +
2

λ1
I6,n n

n na I4,b ,

B647
ab =

2

λ1
I4,n n

n na I7,b +
2

λ1
I7,n n

n na I4,b ,

B656
ab =

2

λ1
I5,n n

n na I6,b +
2

λ1
I6,n n

n na I5,b ,

B657
ab =

2

λ1
I5,n n

n na I7,b +
2

λ1
I7,n n

n na I5,b ,

(5.33)

which are symmetric because n and ∇Ii are parallel. In addition, the orthogonality of m to ∇Ii (i =

1, 2, 4, 5, 6, 7) together with cna Ii,n =
Ii,a
λ1

gives the following relation

K̄n
a Ii,n = mn cca mc Ii,n +ma c

n
c m

c Ii,n = mn Ii,n c
c
a mc +ma

1

λ1
Ii,c m

c = 0 . (5.34)

It follows that
B946

ab = B947
ab = B956

ab = B957
ab = 0 , (5.35)

and thus the additional Cauchy elasticity terms introduce no new constraints. Consequently, in this case the
symmetry of the term Aκ

ab is equivalent to that of Bκ
ab, where κ is a three-component index.

We next discuss the symmetry equivalence between the terms (5.23) and (5.26) (i.e., Aκ
ab and Bκ

ab, where
κ is a two-component index). Given that n and ∇I6 are parallel, we have na I6,n = nn I6,a and the term B46

ab

becomes
B46

ab = (na n
n)|n I6,b + (I6,a n

n nn)|b . (5.36)

Expanding the right-hand side of (5.36) and omitting the symmetric terms na I6,b and I6|ab, one has the
following representation

B46
ab = na|n n

n I6,b + I6,a (nn nn)|b . (5.37)

Referring to (4.54), which provides an equivalent expression for B44
ab when n and ∇I4 are parallel in trans-

versely isotropic solids, and with respect to the functional dependence of I4 and I6, it is inferred that

B46
ab ≡ B44

ab . (5.38)

Similarly, we have
B47

ab ≡ B44
ab . (5.39)

We can also use (4.47) and na I6,n = nn I6,a to rewrite B56
ab as

B56
ab = (2λ1 na n

n)|n I6,b + (2λ1 nn n
n I6,a)|b , (5.40)

which is further simplified to read

B56
ab ≡ na|n (2λ1 n

n) I6,b + (2λ1 nn n
n)|b I6,a . (5.41)

By applying (4.65) which is obtained from the symmetry of B55
ab for transversely isotropic solids, (5.41) can

be expressed in the following form

B56
ab ≡ c̄4 I5,a I6,b + (2λ1 nn n

n)|b I6,a + (2λ1 nn n
n)|a I6,b , (5.42)

which is evidently symmetric. Thus
B56

ab ≡ B55
ab . (5.43)
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Using the same approach, the following symmetry equivalences are established:

B57
ab ≡ B55

ab , B66
ab ≡ B55

ab , B67
ab ≡ B55

ab . (5.44)

From (5.28), (5.38), (5.39), (5.43) and (5.44)1, one deduces that

A46
ab ≡ B44

ab + B74
ab ,

A47
ab ≡ B44

ab + B84
ab ,

A56
ab ≡ B55

ab + B75
ab ,

A57
ab ≡ B55

ab + B85
ab .

(5.45)

We know that the terms B44
ab = A44

ab and B55
ab = A55

ab are already symmetric, since each direction must be
universal for transversely isotropic solids. As a consequence, (5.45) becomes

A46
ab ≡ B74

ab , A47
ab ≡ B84

ab , A56
ab ≡ B75

ab , A57
ab ≡ B85

ab . (5.46)

To complete the proof of the symmetry equivalence between the Cauchy elasticity terms and the hypere-
lasticity terms in this case, we need to show that the remaining terms in Cauchy elasticity, including B94

ab and
B95

ab , are trivially symmetric. Following [Yavari and Goriely, 2021, 2023], a direct computation shows that for
all universal deformations of incompressible orthotropic hyperelastic solids, when m ⊥ ∇Ii, the expression
K̄n
a |n vanishes identically. This, along with (5.34), leads to B94

ab = B95
ab = 0. It follows that there are at most

four independent terms in hyperelasticity (A46, A47, A56 and A57) and at most four independent terms in
Cauchy elasticity (B74, B84, B75 and B85), which are related by (5.46). Hence, the two groups of symmetry
constraints are equivalent. This conclusion completes the proof of the symmetry equivalence in this case.

5.2.2 Case 2: n (x) and m (x) are orthogonal to ∇Ii

In this case, both n and m are orthogonal to ∇Ii (i = 1, 2, 4, 5, 6, 7), and accordingly

nn Ii,n = mn Ii,n = 0 ,

Ln
a Ii,n = L̄n

a Ii,n = Kn
a Ii,n = K̄n

a Ii,n = 0 ,

Ln
a |n = Kn

a |n = L̄n
a |n = K̄n

a |n = 0 .

(5.47)

In view of the above relations, most of the hyperelasticity and Cauchy elasticity terms in (5.23), (5.24),
(5.26) and (5.27) are identically zero. The remaining terms are related as follows (see (5.28) and (5.29))

A46
ab = B46

ab + B74
ab ,

A47
ab = B47

ab ,

A56
ab = B75

ab ,

A146
ab = B146

ab ,

A147
ab = B147

ab ,

A156
ab = B156

ab ,

A157
ab = B157

ab ,

A246
ab = B246

ab ,

A247
ab = B247

ab ,

A256
ab = B256

ab ,

A257
ab = B257

ab .

(5.48)

In this case B46
ab = (na n

n)|n I6,b and B44
ab = (na n

n)|n I4,b. Due to the functional dependence of I4 and I6,

we have B46
ab ≡ B44

ab . Since B44
ab is symmetric, it follows from (5.48)1 that

A46
ab ≡ B74

ab . (5.49)
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Thus, the symmetry constraint terms in Cauchy elasticity correspond one to one with those in hyperelasticity
in this case, showing that the two sets of constraints are equivalent.

We showed that for incompressible orthotropic solids, the symmetries of the terms corresponding to the
coupling of N1 and N2 in hyperelasticity and those in Cauchy elasticity are equivalent for the two possible
cases. Since each direction must be universal for transversely isotropic solids, the symmetry equivalence
between the corresponding terms in hyperelasticity and Cauchy elasticity holds as demonstrated in §4.2. In
summary, we have proved the following result.

Proposition 5.2. The universal deformations and material preferred directions of incompressible orthotropic
Cauchy elasticity are identical to those of incompressible orthotropic hyperelasticity.

6 Universality Constraints in Monoclinic Elasticity

The material symmetry of a monoclinic solid is characterized by three unit vectors N1, N2 and N3 [Merodio
and Ogden, 2020]. The first two vectors, N1 and N2, are not mutually perpendicular, whereas N3 is oriented
normal to the plane they span, i.e., N1 ̸⊥ N2, and N3 ⊥ span{N1,N2}. The strain energy density function
of monoclinic hyperelastic solids is defined in terms of nine invariants, i.e., W = W (I1, · · · , I9). The first
seven invariants are the same as those introduced for orthotropic solids, while the two additional invariants
are defined as [Spencer, 1986]

I8 = gN1 ·C ·N2 , I9 = g2 , (6.1)

where g = N1 ·N2. The second Piola–Kirchhoff stress tensor for monoclinic solids is written as [Yavari and
Goriely, 2023, 2021]

S =2W1 G
♯ + 2W2 (I2 C

−1 − I3 C
−2) + 2W3 I3 C

−1

+ 2W4 (N1 ⊗N1) + 2W5 [N1 ⊗ (C ·N1) + (C ·N1)⊗N1]

+ 2W6 (N2 ⊗N2) + 2W7 [N2 ⊗ (C ·N2) + (C ·N2)⊗N2] + gW8 (N1 ⊗N2 +N2 ⊗N1) .

(6.2)

Note that W9 does not contribute to the above equation because
∂I9
∂C♭

= 0. The Cauchy stress is then written
as

σ =
2√
I3

W1 b
♯ +

2√
I3

(I2 W2 + I3 W3)g
♯ − 2

√
I3 W2 c

♯

+
2√
I3

W4 (n1 ⊗ n1) +
2√
I3

W5 [n1 ⊗ (b · n1) + (b · n1)⊗ n1]

+
2√
I3

W6 (n2 ⊗ n2) +
2√
I3

W7 [n2 ⊗ (b · n2) + (b · n2)⊗ n2] +
1√
I3

gW8 (n1 ⊗ n2 + n2 ⊗ n1) ,

(6.3)

where Wi =
∂W

∂Ii
(i = 1, · · · , 9), n1 = F ·N1 and n2 = F ·N2. In components, it takes the following form

σab =
2√
I3

[W1 b
ab + (I2 W2 + I3 W3)g

ab − I3 W2 c
ab

+W4 n
a
1 n

b
1 +W5 (n

a
1 b

bc nd
1 gcd + nb

1 b
ac nd

1 gcd)

+W6 n
a
2 n

b
2 +W7 (n

a
2 b

bc nd
2 gcd + nb

2 b
ac nd

2 gcd) +
1

2
gW8 (n

a
1 n

b
2 + na

2 n
b
1)] ,

(6.4)

where na
1 = F a

A NA
1 and na

2 = F a
A NA

2 .
Referring to [Yavari and Goriely, 2025], the second Piola–Kirchhoff stress tensor for monoclinic Cauchy

elastic solids has the following representation

S =a0 G
♯ + a1 C

♯ + a2 C
2♯ + a3 (N1 ⊗N1) + a4 [N1 ⊗ (C ·N1) + (C ·N1)⊗N1]

+ a5 [N1 ⊗ (C2 ·N1) + (C2 ·N1)⊗N1]

+ a6 (N2 ⊗N2) + a7 [N2 ⊗ (C ·N2) + (C ·N2)⊗N2]

+ a8 [N2 ⊗ (C2 ·N2) + (C2 ·N2)⊗N2] + g a9 (N1 ⊗N2 +N2 ⊗N1) ,

(6.5)
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where ai (I1, · · · , I9) , i = 0, · · · , 9 are the response functions. The Cauchy stress tensor is similarly written
as

σ =ã0 g
♯ + ã1 b

♯ + ã2 c
♯ + ã3 (n1 ⊗ n1) + ã4 [n1 ⊗ (b · n1) + (b · n1)⊗ n1]

+ ã5 [n1 ⊗ (c · n1) + (c · n1)⊗ n1] + ã6 (n2 ⊗ n2) + ã7 [n2 ⊗ (b · n2) + (b · n2)⊗ n2]

+ ã8 [n2 ⊗ (c · n2) + (c · n2)⊗ n2] + g ã9 (n1 ⊗ n2 + n2 ⊗ n1) ,

(6.6)

where ãi (I1, · · · , I9) , i = 0, · · · , 9 are the response functions.
Taking I3 = 1, we have the following expression for the second Piola–Kirchhoff stress tensor of incom-

pressible monoclinic hyperelastic solids [Yavari and Goriely, 2023, 2021]

S =− pC−1 + 2W1 G
♯ + 2W2 (I2 C

−1 −C−2)

+ 2W4 (N1 ⊗N1) + 2W5 [N1 ⊗ (C ·N1) + (C ·N1)⊗N1]

+ 2W6 (N2 ⊗N2) + 2W7 [N2 ⊗ (C ·N2) + (C ·N2)⊗N2] + gW8 (N1 ⊗N2 +N2 ⊗N1) ,

(6.7)

where W = W (I1, I2, I4, I5, I6, I7, I8, I9). The Cauchy stress is similarly written as [Yavari and Goriely,
2023, 2021]

σ =− pg♯ + 2W1 b
♯ − 2W2 c

♯ + 2W4 (n1 ⊗ n1)

+ 2W5 [n1 ⊗ (b · n1) + (b · n1)⊗ n1] + 2W6 (n2 ⊗ n2)

+ 2W7 [n2 ⊗ (b · n2) + (b · n2)⊗ n2] + gW8 (n1 ⊗ n2 + n2 ⊗ n1) .

(6.8)

Hence, the Cauchy stress can be represented in components as

σab = −p gab + 2W1 b
ab − 2W2 c

ab + 2W4 n
a
1 n

b
1 + 2W5 ℓ

ab
1 + 2W6 n

a
2 n

b
2 + 2W7 ℓ

ab
2 +W8 ℓ

ab
3 , (6.9)

where ℓab1 = na
1 b

bc nd
1 gcd + nb

1 b
ac nd

1 gcd, ℓ
ab
2 = na

2 b
bc nd

2 gcd + nb
2 b

ac nd
2 gcd, and ℓab3 = g (na

1 n
b
2 + nb

1 n
a
2).

In the case of incompressible monoclinic Cauchy elastic solids, the second Piola–Kirchhoff stress tensor
is written as

S =− pC−1 + ā0 G
♯ + ā1 C

♯ + ā2 (N1 ⊗N1) + ā4 [N1 ⊗ (C ·N1) + (C ·N1)⊗N1]

+ ā5 [N1 ⊗ (C−1 ·N1) + (C−1 ·N1)⊗N1]

+ ā6 (N2 ⊗N2) + ā7 [N2 ⊗ (C ·N2) + (C ·N2)⊗N2]

+ ā8 [N2 ⊗ (C−1 ·N2) + (C−1 ·N2)⊗N2] + g ā9 (N1 ⊗N2 +N2 ⊗N1) ,

(6.10)

where āi (I1, I2, I4, I5, I6, I7, I8, I9), i = 0, 1, 2, 4, 5, 6, 7, 8, 9 are the response functions. Thus, the Cauchy
stress tensor for incompressible monoclinic Cauchy elastic solids is represented as

σ =− pg♯ + α1 b
♯ + α2 c

♯ + α4 (n1 ⊗ n1) + α5 [n1 ⊗ (b · n1) + (b · n1)⊗ n1]

+ α6 [n1 ⊗ (c · n1) + (c · n1)⊗ n1] + α7 (n2 ⊗ n2) + α8 [n2 ⊗ (b · n2) + (b · n2)⊗ n2]

+ α9 [n2 ⊗ (c · n2) + (c · n2)⊗ n2] + gα10 (n1 ⊗ n2 + n2 ⊗ n1) ,

(6.11)

where αi = αi (I1, I2, I4, I5, I6, I7, I8, I9), i = 1, 2, 4, 5, 6, 7, 8, 9, 10 are arbitrary response functions.

6.1 Compressible monoclinic solids

The Cauchy stress for compressible monoclinic Cauchy elastic solids is given in components as (see (6.6))

σab = α1 g
ab + α2 b

ab + α3 c
ab + α4 n

a
1 n

b
1 + α5 ℓ

ab
1 + α6 ℓ̄

ab
1 + α7 n

a
2 n

b
2 + α8 ℓ

ab
2 + α9 ℓ̄

ab
2 + α10 ℓ

ab
3 , (6.12)

where ℓ̄ab1 = na
1 c

bc nd
1 gcd+nb

1 c
ac nd

1 gcd, ℓ̄
ab
2 = na

2 c
bc nd

2 gcd+nb
2 c

ac nd
2 gcd, and αi (I1, I2, I3, I4, I5, I6, I7, I8, I9),

i = 1, · · · , 10 are arbitrary response functions. Substituting (6.12) into the equilibrium equations (2.10) yields

α2 b
ab

|b + α3 c
ab

|b + α4

(
na
1 n

b
1

)
|b + α5 ℓ

ab
1 |b + α6 ℓ̄

ab
1 |b + α7

(
na
2 n

b
2

)
|b + α8 ℓ

ab
2 |b + α9 ℓ̄

ab
2 |b

+ α10 ℓ
ab
3 |b + α1,i Ii,b g

ab + α2,i Ii,b b
ab + α3,i Ii,b c

ab + α4,i Ii,b (n
a
1 n

b
1) + α5,i Ii,b ℓ

ab
1

+ α6,i Ii,b ℓ̄
ab
1 + α7,i Ii,b (n

a
2 n

b
2) + α8,i Ii,b ℓ

ab
2 + α9,i Ii,b ℓ̄

ab
2 + α10,i Ii,b ℓ

ab
3 = 0 ,

(6.13)
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where i = 1, · · · , 9. Therefore, the following universality constraints are obtained

bab|b = cab|b = 0 ,(
na
1 n

b
1

)
|b = 0 ,(

na
2 n

b
2

)
|b = 0 ,

ℓab1 |b = 0 ,

ℓab2 |b = 0 ,

ℓab3 |b = 0 ,

Ii,b g
ab = 0 ,

Ii,b b
ab = 0 ,

Ii,b c
ab = 0 ,

Ii,b n
a
1 n

b
1 = 0 ,

Ii,b n
a
2 n

b
2 = 0 ,

Ii,b ℓ
ab
1 = 0 ,

Ii,b ℓ
ab
2 = 0 ,

Ii,b ℓ
ab
3 = 0 ,

ℓ̄ab1 |b = 0 ,

ℓ̄ab2 |b = 0 ,

Ii,b ℓ̄
ab
1 = 0 ,

Ii,b ℓ̄
ab
2 = 0 .

(6.14)

The constraints (6.14)1–(6.14)14 are identical to those for hyperelastic solids [Yavari and Goriely, 2023, 2021].
Thus, similar to orthotropic solids, (6.14)15–(6.14)18 are the extra constraints in Cauchy elasticity.

Except for (6.14)6 and (6.14)14, the remaining constraints (for i = 1, · · · , 7) are the same as those for
orthotropic solids. Consequently, universal deformations are homogeneous, Ii (i = 1, · · · , 7) are constant, and
N1 and N2 are constant unit vectors. The constraints ℓab3 |b = 0 and Ii,b g

ab = 0 (for i = 8, 9) imply that N3

is also a constant vector and that I8 and I9 are constant (note that (6.14)14 is then trivially satisfied). Given
these results, it can be shown that the additional constraints in Cauchy elasticity, i.e., (6.14)15—(6.14)18,
are trivially satisfied. In summary, we have proved the following result.

Proposition 6.1. The universal deformations and material preferred directions of compressible monoclinic
Cauchy elasticity are identical to those of compressible monoclinic hyperelasticity.

6.2 Incompressible monoclinic solids

Let us substitute (6.8) into the equilibrium equations to get

p|b g
ab = 2

[
W1 b

ab −W2 c
ab +W4 n

a
1 n

b
1 +W5 ℓ

ab
1 +W6 n

a
2 n

b
2 +W7 ℓ

ab
2 +

1

2
W8 ℓ

ab
3

]
|b
, (6.15)

for hyperelastic solids. Similarly, substituting the Cauchy stress (6.11) into the equilibrium equations (2.10)
gives the following equation for Cauchy elastic solids

p|b g
ab =

[
α1 b

ab + α2 c
ab + α4 n

a
1 n

b
1 + α5 ℓ

ab
1 + α6 ℓ̄

ab
1 + α7 n

a
2 n

b
2 + α8 ℓ

ab
2 + α9 ℓ̄

ab
2 + α10 ℓ

ab
3

]
|b . (6.16)

In hyperelasticity, p|ab =
∑

κ A
κ
ab Wκ, and therefore the condition p|ab = p|ba is identical to Aκ

ab = Aκ
ba.

It was found that there are 78 additional terms for monoclinic hyperelastic solids which are [Yavari and
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A8
ab = qna |nb ,

A18
ab = qna |n I1,b + (qna I1,n)|b + bna |n I8,b + (bna I8,n)|b ,

A19
ab = bna |n I9,b + (bna I9,n)|b ,

A28
ab = qna |n I2,b + (qna I2,n)|b − cna |n I8,b − (cna I8,n)|b ,

A29
ab = −cna |n I9,b − (cna I9,n)|b ,

A48
ab = qna |n I4,b + (qna I4,n)|b + (na n

n)|n I8,b + (na n
n I8,n)|b ,

A49
ab = (na n

n)|n I9,b + (na n
n I9,n)|b ,

A58
ab = qna |n I5,b + (qna I5,n)|b + Ln

a |n I8,b + (Ln
a I8,n)|b ,

A59
ab = Ln

a |n I9,b + (Ln
a I9,n)|b ,

A68
ab = qna |n I6,b + (qna I6,n)|b + (ma m

n)|n I8,b + (ma m
n I8,n)|b ,

A69
ab = (ma m

n)|n I9,b + (ma m
n I9,n)|b ,

A78
ab = qna |n I7,b + (qna I7,n)|b + Kn

a |n I8,b + (Kn
a I8,n)|b ,

A79
ab = Kn

a |n I9,b + (Kn
a I9,n)|b ,

A88
ab = qna |n I8,b + (qna I8,n)|b ,

A89
ab = qna |n I9,b + (qna I9,n)|b ,

(6.17)

and

A118
ab = bna (I1,n I8,b + I1,b I8,n) ,

A119
ab = bna (I1,n I9,b + I1,b I9,n) ,

A128
ab = bna (I2,n I8,b + I2,b I8,n)− cna (I1,n I8,b + I1,b I8,n) ,

A129
ab = bna (I2,n I9,b + I2,b I9,n)− cna (I1,n I9,b + I1,b I9,n) ,

A148
ab = bna (I4,n I8,b + I4,b I8,n) + na n

n (I1,n I8,b + I1,b I8,n) ,

A149
ab = bna (I4,n I9,b + I4,b I9,n) + na n

n (I1,n I9,b + I1,b I9,n) ,

A158
ab = bna (I5,n I8,b + I5,b I8,n) + Ln

a (I1,n I8,b + I1,b I8,n) ,

A159
ab = bna (I5,n I9,b + I5,b I9,n) + Ln

a (I1,n I9,b + I1,b I9,n) ,

A168
ab = bna (I6,n I8,b + I6,b I8,n) +ma m

n (I1,n I8,b + I1,b I8,n) ,

A169
ab = bna (I6,n I9,b + I6,b I9,n) +ma m

n (I1,n I9,b + I1,b I9,n) ,

A178
ab = bna (I7,n I8,b + I7,b I8,n) + Kn

a (I1,n I8,b + I1,b I8,n) ,

A179
ab = bna (I7,n I9,b + I7,b I9,n) + Kn

a (I1,n I9,b + I1,b I9,n) ,

A188
ab = bna I8,n I8,b + qna (I1,n I8,b + I1,b I8,n) ,

A189
ab = bna (I8,n I9,b + I8,b I9,n) + qna (I1,n I9,b + I1,b I9,n) ,

A199
ab = bna I9,n I9,b ,

(6.18)
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and

A228
ab = −cna (I2,n I8,b + I2,b I8,n) ,

A229
ab = −cna (I2,n I9,b + I2,b I9,n) ,

A248
ab = −cna (I4,n I8,b + I4,b I8,n) + na n

n (I2,n I8,b + I2,b I8,n) ,

A249
ab = −cna (I4,n I9,b + I4,b I9,n) + na n

n (I2,n I9,b + I2,b I9,n) ,

A258
ab = −cna (I5,n I8,b + I5,b I8,n) + Ln

a (I2,n I8,b + I2,b I8,n) ,

A259
ab = −cna (I5,n I9,b + I5,b I9,n) + Ln

a (I2,n I9,b + I2,b I9,n) ,

A268
ab = −cna (I6,n I8,b + I6,b I8,n) +ma m

n (I2,n I8,b + I2,b I8,n) ,

A269
ab = −cna (I6,n I9,b + I6,b I9,n) +ma m

n (I2,n I9,b + I2,b I9,n) ,

A278
ab = −cna (I7,n I8,b + I7,b I8,n) + Kn

a (I2,n I8,b + I2,b I8,n) ,

A279
ab = −cna (I7,n I9,b + I7,b I9,n) + Kn

a (I2,n I9,b + I2,b I9,n) ,

A288
ab = −cna I8,n I8,b + qna (I2,n I8,b + I2,b I8,n) ,

A289
ab = −cna (I8,n I9,b + I8,b I9,n) + qna (I2,n I9,b + I2,b I9,n) ,

A299
ab = −cna I9,n I9,b ,

A448
ab = na n

n (I4,n I8,b + I4,b I8,n) ,

A449
ab = na n

n (I4,n I9,b + I4,b I9,n) ,

(6.19)

and

A458
ab = na n

n (I5,n I8,b + I5,b I8,n) + Ln
a (I4,n I8,b + I4,b I8,n) ,

A459
ab = na n

n (I5,n I9,b + I5,b I9,n) + Ln
a (I4,n I9,b + I4,b I9,n) ,

A468
ab = na n

n (I6,n I8,b + I6,b I8,n) +ma m
n (I4,n I8,b + I4,b I8,n) ,

A469
ab = na n

n (I6,n I9,b + I6,b I9,n) +ma m
n (I4,n I9,b + I4,b I9,n) ,

A478
ab = na n

n (I7,n I8,b + I7,b I8,n) + Kn
a (I4,n I8,b + I4,b I8,n) ,

A479
ab = na n

n (I7,n I9,b + I7,b I9,n) + Kn
a (I4,n I9,b + I4,b I9,n) ,

A488
ab = na n

n I8,n I8,b + qna (I4,n I8,b + I4,b I8,n) ,

A489
ab = na n

n (I8,n I9,b + I8,b I9,n) + qna (I4,n I9,b + I4,b I9,n) ,

A499
ab = na n

n I9,n I9,b ,

A558
ab = Ln

a (I5,n I8,b + I5,b I8,n) ,

A559
ab = Ln

a (I5,n I9,b + I5,b I9,n) ,

A568
ab = Ln

a (I6,n I8,b + I6,b I8,n) +ma m
n (I5,n I8,b + I5,b I8,n) ,

A569
ab = Ln

a (I6,n I9,b + I6,b I9,n) +ma m
n (I5,n I9,b + I5,b I9,n) ,

A578
ab = Ln

a (I7,n I8,b + I7,b I8,n) + Kn
a (I5,n I8,b + I5,b I8,n) ,

A579
ab = Ln

a (I7,n I9,b + I7,b I9,n) + Kn
a (I5,n I9,b + I5,b I9,n) ,

(6.20)
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and

A588
ab = Ln

a I8,n I8,b + qna (I5,n I8,b + I5,b I8,n) ,

A589
ab = Ln

a (I8,n I9,b + I8,b I9,n) + qna (I5,n I9,b + I5,b I9,n) ,

A599
ab = Ln

a I9,n I9,b ,

A668
ab = ma m

n (I6,n I8,b + I6,b I8,n) ,

A669
ab = ma m

n (I6,n I9,b + I6,b I9,n) ,

A678
ab = ma m

n (I7,n I8,b + I7,b I8,n) + Kn
a (I6,n I8,b + I6,b I8,n) ,

A679
ab = ma m

n (I7,n I9,b + I7,b I9,n) + Kn
a (I6,n I9,b + I6,b I9,n) ,

A688
ab = ma m

n I8,n I8,b + qna (I6,n I8,b + I6,b I8,n) ,

A689
ab = ma m

n (I8,n I9,b + I8,b I9,n) + qna (I6,n I9,b + I6,b I9,n) ,

A699
ab = ma m

n I9,n I9,b ,

A778
ab = Kn

a (I7,n I8,b + I7,b I8,n) ,

A779
ab = Kn

a (I7,n I9,b + I7,b I9,n) ,

A788
ab = Kn

a I8,n I8,b + qna (I7,n I8,b + I7,b I8,n) ,

A789
ab = Kn

a (I8,n I9,b + I8,b I9,n) + qna (I7,n I9,b + I7,b I9,n) ,

A799
ab = Kn

a I9,n I9,b ,

A888
ab = qna I8,n I8,b ,

A889
ab = qna (I8,n I9,b + I8,b I9,n) ,

A999
ab = qna I9,n I9,b ,

(6.21)

where n = n1, m = n2, L
ab = ℓab1 , Kab = ℓab2 and qab = ℓab3 .

Taking (6.16) into account, one may determine p|ab in Cauchy elasticity as

p|ab =
∑
κ

(
B1κ

ab α1κ + B2κ
ab α2κ + B4κ

ab α4κ + B5κ
ab α5κ + B6κ

ab α6κ

+ B7κ
ab α7κ + B8κ

ab α8κ + B9κ
ab α9κ + B10κ

ab α10κ

)
,

(6.22)

where B1κ
ab , B

2κ
ab , B

4κ
ab , B

5κ
ab , B

6κ
ab , B

7κ
ab , B

8κ
ab , B

9κ
ab and B10κ

ab are the matrices of coefficients of α1κ, α2κ, α4κ,
α5κ, α6κ, α7κ, α8κ, α9κ and α10κ, respectively (αiκ = ∂αi/∂Iκ, where κ is a multi-index). The extra terms
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in Cauchy elasticity are found to be

B10
ab = qna |nb ,

B18
ab = bna |n I8,b + (bna I8,n)|b ,

B19
ab = bna |n I9,b + (bna I9,n)|b ,

B28
ab = −cna |n I8,b − (cna I8,n)|b ,

B29
ab = −cna |n I9,b − (cna I9,n)|b ,

B48
ab = (na n

n)|n I8,b + (na n
n I8,n)|b ,

B49
ab = (na n

n)|n I9,b + (na n
n I9,n)|b ,

B58
ab = Ln

a |n I8,b + (Ln
a I8,n)|b ,

B59
ab = Ln

a |n I9,b + (Ln
a I9,n)|b ,

B68
ab = L̄n

a |n I8,b +
(
L̄n
a I8,n

)
|b ,

B69
ab = L̄n

a |n I9,b +
(
L̄n
a I9,n

)
|b ,

B78
ab = (ma m

n)|n I8,b + (ma m
n I8,n)|b ,

B79
ab = (ma m

n)|n I9,b + (ma m
n I9,n)|b ,

B88
ab = Kn

a |n I8,b + (Kn
a I8,n)|b ,

B89
ab = Kn

a |n I9,b + (Kn
a I9,n)|b ,

B98
ab = K̄n

a |n I8,b +
(
K̄n
a I8,n

)
|b ,

B99
ab = K̄n

a |n I9,b +
(
K̄n
a I9,n

)
|b ,

B10 1
ab = qna |n I1,b + (qna I1,n)|b ,

B10 2
ab = qna |n I2,b + (qna I2,n)|b ,

B10 4
ab = qna |n I4,b + (qna I4,n)|b ,

B10 5
ab = qna |n I5,b + (qna I5,n)|b ,

B10 6
ab = qna |n I6,b + (qna I6,n)|b ,

B10 7
ab = qna |n I7,b + (qna I7,n)|b ,

B10 8
ab = qna |n I8,b + (qna I8,n)|b ,

B10 9
ab = qna |n I9,b + (qna I9,n)|b ,

(6.23)
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and

B118
ab = bna (I1,n I8,b + I1,b I8,n) ,

B119
ab = bna (I1,n I9,b + I1,b I9,n) ,

B128
ab = bna (I2,n I8,b + I2,b I8,n) ,

B129
ab = bna (I2,n I9,b + I2,b I9,n) ,

B148
ab = bna (I4,n I8,b + I4,b I8,n) ,

B149
ab = bna (I4,n I9,b + I4,b I9,n) ,

B158
ab = bna (I5,n I8,b + I5,b I8,n) ,

B159
ab = bna (I5,n I9,b + I5,b I9,n) ,

B168
ab = bna (I6,n I8,b + I6,b I8,n) ,

B169
ab = bna (I6,n I9,b + I6,b I9,n) ,

B178
ab = bna (I7,n I8,b + I7,b I8,n) ,

B179
ab = bna (I7,n I9,b + I7,b I9,n) ,

B188
ab = bna I8,n I8,b ,

B189
ab = bna (I8,n I9,b + I8,b I9,n) ,

B199
ab = bna I9,n I9,b ,

(6.24)

and

B218
ab = −cna (I1,n I8,b + I1,b I8,n) ,

B219
ab = −cna (I1,n I9,b + I1,b I9,n) ,

B228
ab = −cna (I2,n I8,b + I2,b I8,n) ,

B229
ab = −cna (I2,n I9,b + I2,b I9,n) ,

B248
ab = −cna (I4,n I8,b + I4,b I8,n) ,

B249
ab = −cna (I4,n I9,b + I4,b I9,n) ,

B258
ab = −cna (I5,n I8,b + I5,b I8,n) ,

B259
ab = −cna (I5,n I9,b + I5,b I9,n) ,

B268
ab = −cna (I6,n I8,b + I6,b I8,n) ,

B269
ab = −cna (I6,n I9,b + I6,b I9,n) ,

B278
ab = −cna (I7,n I8,b + I7,b I8,n) ,

B279
ab = −cna (I7,n I9,b + I7,b I9,n) ,

B288
ab = −cna I8,n I8,b ,

B289
ab = −cna (I8,n I9,b + I8,b I9,n) ,

B299
ab = −cna I9,n I9,b ,

(6.25)
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and

B418
ab = na n

n (I1,n I8,b + I1,b I8,n) ,

B419
ab = na n

n (I1,n I9,b + I1,b I9,n) ,

B428
ab = na n

n (I2,n I8,b + I2,b I8,n) ,

B429
ab = na n

n (I2,n I9,b + I2,b I9,n) ,

B448
ab = na n

n (I4,n I8,b + I4,b I8,n) ,

B449
ab = na n

n (I4,n I9,b + I4,b I9,n) ,

B458
ab = na n

n (I5,n I8,b + I5,b I8,n) ,

B459
ab = na n

n (I5,n I9,b + I5,b I9,n) ,

B468
ab = na n

n (I6,n I8,b + I6,b I8,n) ,

B469
ab = na n

n (I6,n I9,b + I6,b I9,n) ,

B478
ab = na n

n (I7,n I8,b + I7,b I8,n) ,

B479
ab = na n

n (I7,n I9,b + I7,b I9,n) ,

B488
ab = na n

n I8,n I8,b ,

B489
ab = na n

n (I8,n I9,b + I8,b I9,n) ,

B499
ab = na n

n I9,n I9,b ,

(6.26)

and

B518
ab = Ln

a (I1,n I8,b + I1,b I8,n) ,

B519
ab = Ln

a (I1,n I9,b + I1,b I9,n) ,

B528
ab = Ln

a (I2,n I8,b + I2,b I8,n) ,

B529
ab = Ln

a (I2,n I9,b + I2,b I9,n) ,

B548
ab = Ln

a (I4,n I8,b + I4,b I8,n) ,

B549
ab = Ln

a (I4,n I9,b + I4,b I9,n) ,

B558
ab = Ln

a (I5,n I8,b + I5,b I8,n) ,

B559
ab = Ln

a (I5,n I9,b + I5,b I9,n) ,

B568
ab = Ln

a (I6,n I8,b + I6,b I8,n) ,

B569
ab = Ln

a (I6,n I9,b + I6,b I9,n) ,

B578
ab = Ln

a (I7,n I8,b + I7,b I8,n) ,

B579
ab = Ln

a (I7,n I9,b + I7,b I9,n) ,

B588
ab = Ln

a I8,n I8,b ,

B589
ab = Ln

a (I8,n I9,b + I8,b I9,n) ,

B599
ab = Ln

a I9,n I9,b ,

(6.27)
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and

B618
ab = L̄n

a (I1,n I8,b + I1,b I8,n) ,

B619
ab = L̄n

a (I1,n I9,b + I1,b I9,n) ,

B628
ab = L̄n

a (I2,n I8,b + I2,b I8,n) ,

B629
ab = L̄n

a (I2,n I9,b + I2,b I9,n) ,

B648
ab = L̄n

a (I4,n I8,b + I4,b I8,n) ,

B649
ab = L̄n

a (I4,n I9,b + I4,b I9,n) ,

B658
ab = L̄n

a (I5,n I8,b + I5,b I8,n) ,

B659
ab = L̄n

a (I5,n I9,b + I5,b I9,n) ,

B668
ab = L̄n

a (I6,n I8,b + I6,b I8,n) ,

B669
ab = L̄n

a (I6,n I9,b + I6,b I9,n) ,

B678
ab = L̄n

a (I7,n I8,b + I7,b I8,n) ,

B679
ab = L̄n

a (I7,n I9,b + I7,b I9,n) ,

B688
ab = L̄n

a I8,n I8,b ,

B689
ab = L̄n

a (I8,n I9,b + I8,b I9,n) ,

B699
ab = L̄n

a I9,n I9,b ,

(6.28)

and

B718
ab = ma m

n (I1,n I8,b + I1,b I8,n) ,

B719
ab = ma m

n (I1,n I9,b + I1,b I9,n) ,

B728
ab = ma m

n (I2,n I8,b + I2,b I8,n) ,

B729
ab = ma m

n (I2,n I9,b + I2,b I9,n) ,

B748
ab = ma m

n (I4,n I8,b + I4,b I8,n) ,

B749
ab = ma m

n (I4,n I9,b + I4,b I9,n) ,

B758
ab = ma m

n (I5,n I8,b + I5,b I8,n) ,

B759
ab = ma m

n (I5,n I9,b + I5,b I9,n) ,

B768
ab = ma m

n (I6,n I8,b + I6,b I8,n) ,

B769
ab = ma m

n (I6,n I9,b + I6,b I9,n) ,

B778
ab = ma m

n (I7,n I8,b + I7,b I8,n) ,

B779
ab = ma m

n (I7,n I9,b + I7,b I9,n) ,

B788
ab = ma m

n I8,n I8,b ,

B789
ab = ma m

n (I8,n I9,b + I8,b I9,n) ,

B799
ab = ma m

n I9,n I9,b ,

(6.29)
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and

B818
ab = Kn

a (I1,n I8,b + I1,b I8,n) ,

B819
ab = Kn

a (I1,n I9,b + I1,b I9,n) ,

B828
ab = Kn

a (I2,n I8,b + I2,b I8,n) ,

B829
ab = Kn

a (I2,n I9,b + I2,b I9,n) ,

B848
ab = Kn

a (I4,n I8,b + I4,b I8,n) ,

B849
ab = Kn

a (I4,n I9,b + I4,b I9,n) ,

B858
ab = Kn

a (I5,n I8,b + I5,b I8,n) ,

B859
ab = Kn

a (I5,n I9,b + I5,b I9,n) ,

B868
ab = Kn

a (I6,n I8,b + I6,b I8,n) ,

B869
ab = Kn

a (I6,n I9,b + I6,b I9,n) ,

B878
ab = Kn

a (I7,n I8,b + I7,b I8,n) ,

B879
ab = Kn

a (I7,n I9,b + I7,b I9,n) ,

B888
ab = Kn

a I8,n I8,b ,

B889
ab = Kn

a (I8,n I9,b + I8,b I9,n) ,

B899
ab = Kn

a I9,n I9,b ,

(6.30)

and

B918
ab = K̄n

a (I1,n I8,b + I1,b I8,n) ,

B919
ab = K̄n

a (I1,n I9,b + I1,b I9,n) ,

B928
ab = K̄n

a (I2,n I8,b + I2,b I8,n) ,

B929
ab = K̄n

a (I2,n I9,b + I2,b I9,n) ,

B948
ab = K̄n

a (I4,n I8,b + I4,b I8,n) ,

B949
ab = K̄n

a (I4,n I9,b + I4,b I9,n) ,

B958
ab = K̄n

a (I5,n I8,b + I5,b I8,n) ,

B959
ab = K̄n

a (I5,n I9,b + I5,b I9,n) ,

B968
ab = K̄n

a (I6,n I8,b + I6,b I8,n) ,

B969
ab = K̄n

a (I6,n I9,b + I6,b I9,n) ,

B978
ab = K̄n

a (I7,n I8,b + I7,b I8,n) ,

B979
ab = K̄n

a (I7,n I9,b + I7,b I9,n) ,

B988
ab = K̄n

a I8,n I8,b ,

B989
ab = K̄n

a (I8,n I9,b + I8,b I9,n) ,

B999
ab = K̄n

a I9,n I9,b ,

(6.31)
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and

B10 18
ab = qna (I1,n I8,b + I1,b I8,n) ,

B10 19
ab = qna (I1,n I9,b + I1,b I9,n) ,

B10 28
ab = qna (I2,n I8,b + I2,b I8,n) ,

B10 29
ab = qna (I2,n I9,b + I2,b I9,n) ,

B10 48
ab = qna (I4,n I8,b + I4,b I8,n) ,

B10 49
ab = qna (I4,n I9,b + I4,b I9,n) ,

B10 58
ab = qna (I5,n I8,b + I5,b I8,n) ,

B10 59
ab = qna (I5,n I9,b + I5,b I9,n) ,

B10 68
ab = qna (I6,n I8,b + I6,b I8,n) ,

B10 69
ab = qna (I6,n I9,b + I6,b I9,n) ,

B10 78
ab = qna (I7,n I8,b + I7,b I8,n) ,

B10 79
ab = qna (I7,n I9,b + I7,b I9,n) ,

B10 88
ab = qna I8,n I8,b ,

B10 89
ab = qna (I8,n I9,b + I8,b I9,n) ,

B10 99
ab = qna I9,n I9,b ,

(6.32)

where L̄ab = ℓ̄ab1 and K̄ab = ℓ̄ab2 . Thus, there are 160 additional universality constraints for incompressible
monoclinic Cauchy elastic solids.

First consider the terms Aκ
ab and Bκ

ab, where κ is a three-component index. From (6.18)–(6.21) and
(6.24)–(6.32), we have

A199
ab = B199

ab ,

A119
ab = B119

ab ,

A499
ab = B499

ab ,

A699
ab = B799

ab ,

A489
ab = B489

ab + B10 49
ab ,

A689
ab = B789

ab + B10 69
ab ,

A188
ab = B188

ab + B10 18
ab ,

A118
ab = B118

ab .

(6.33)

The symmetry ofA199
ab or B199

ab asserts that∇I9 is an eigenvector of bna (we assume that Ii, i = 1, 2, 4, 5, 6, 7, 8, 9
are not constant), i.e., bna I9,n = λ9 I9,a, where λ9 is the corresponding eigenvalue. Substituting this expres-
sion into A119

ab or B119
ab gives

A119
ab = B119

ab = λ1 I1,a I9,b + λ9 I9,a I1,b , (6.34)

which is symmetric only when λ1 = λ9, or equivalently, ∇I1 and ∇I9 are parallel. Thus, I9 and Ii (i =
1, 2, 4, 5, 6, 7) are functionally dependent. Moreover, the symmetry of the term A499

ab or B499
ab is preserved

if n and ∇I9 are either parallel or orthogonal. Referring to [Yavari and Goriely, 2021], we find that the
former case is inadmissible, and thus n ⊥ ∇I9. A similar line of reasoning shows that m is orthogonal to
∇I9, ensuring that the term A699

ab or B799
ab remains symmetric. Let us now consider the term B10 49

ab . Since
nn I9,n = mn I9,n = 0 and ∇I9 and ∇I4 are parallel, it follows that nn I4,n = mn I4,n = 0. Hence

B10 49
ab = g (na m

n I4,n I9,b + na m
n I9,n I4,b +ma n

n I4,n I9,b +ma n
n I9,n I4,b) = 0 , (6.35)

in which we used qna = g (na m
n +ma n

n). Therefore, (6.33)5 becomes

A489
ab = B489

ab = na n
n I8,n I9,b . (6.36)
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Because n and ∇I9 are not parallel, the term A489
ab or B489

ab is symmetric only if nn I8,n = 0, i.e., n ⊥ ∇I8.
Similarly, B10 69

ab = 0 and (6.33)6 is written as

A689
ab = B789

ab = ma m
n I8,n I9,b . (6.37)

The symmetry of A689
ab or B789

ab then gives m ⊥ ∇I8. Therefore, qna I8,n = 0, and consequently B10 18
ab = 0.

Hence (6.33)7 is simplified to read
A188

ab = B188
ab = bna I8,n I8,b , (6.38)

which implies that bna I8,n = λ8 I8,a, where λ8 is the corresponding eigenvalue. Given this result, we have

A118
ab = B118

ab = λ1 I1,a I8,b + λ8 I8,a I1,b , (6.39)

which is symmetric only if ∇I1 and ∇I8 are parallel.
To summarize, we showed that the symmetries of the terms

{A199
ab ,A119

ab ,A499
ab ,A699

ab ,A489
ab ,A689

ab ,A188
ab ,A118

ab } , (6.40)

in hyperelasticity are equivalent to those of

{B199
ab ,B119

ab ,B499
ab ,B799

ab ,B489
ab ,B689

ab ,B188
ab ,B118

ab } , (6.41)

in Cauchy elasticity. Both sets are symmetric if ∇I8 and ∇I9 are parallel to ∇Ii (i = 1, 2, 4, 5, 6, 7), and are
orthogonal to n and m. Therefore, ∇Ii (i = 1, 2, 4, 5, 6, 7, 8, 9) are mutually parallel and all orthogonal to n
and m. This conclusion, in turn, leads to

Ln
a Ii,n = L̄n

a Ii,n = Kn
a Ii,n = K̄n

a Ii,n = qna Ii,n = 0 , (6.42)

where i = 1, 2, 4, 5, 6, 7, 8, 9. With this conclusion, most of the remaining terms in (6.18)–(6.21) and
(6.24)–(6.32) are zero. The non-vanishing terms are described by bna Ii,n I8,b = λ1 Ii,a I8,b (or bna Ii,n I9,b =

λ1 Ii,a I9,b), and cna Ii,n I8,b =
1

λ1
Ii,a I8,b (or c

n
a Ii,n I9,b =

1

λ1
Ii,a I9,b) which are symmetric owing to the func-

tional dependence of Ii (i = 1, 2, 4, 5, 6, 7, 8, 9). Therefore, the symmetries of the remaining terms trivially
hold, and the Cauchy elasticity and hyperelasticity terms are equivalent in this case.

We now turn our attention to the terms Aκ
ab and Bκ

ab, where κ is a two-component index, as given by
(6.17)2–(6.17)15 and (6.23)2–(6.23)25 for hyperelastic and Cauchy elastic solids, respectively. Referring to
[Yavari and Goriely, 2021], one may find that

Ln
a |n = L̄n

a |n = Kn
a |n = K̄n

a |n = qna |n = 0 . (6.43)

Based on (6.42) and (6.43), the terms B58
ab , B

59
ab , B

68
ab , B

69
ab , B

88
ab , B

89
ab , B

98
ab , B

99
ab and B10 i

ab (i = 1, 2, 4, 5, 6, 7, 8, 9)
in Cauchy elasticity, as well as A58

ab , A
59
ab , A

78
ab , A

79
ab , A

88
ab and A89

ab in hyperelasticity vanish. Consequently,
eight terms remain in Cauchy elasticity and eight in hyperelasticity, with a one-to-one correspondence given
by the relations below (see (6.17) and (6.23))

A18
ab = B18

ab ,

A19
ab = B19

ab ,

A28
ab = B28

ab ,

A29
ab = B29

ab ,

A48
ab = B48

ab ,

A49
ab = B49

ab ,

A68
ab = B78

ab ,

A69
ab = B79

ab .

(6.44)

Regarding A8
ab = B10

ab = 0, one now concludes that the Cauchy elasticity universality constraints in this case
are equivalent to those in hyperelasticity. Therefore, for incompressible monoclinic solids, the additional
constraints appearing in hyperelasticity are equivalent to those in Cauchy elasticity.

In summary, we have proved the following result.
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Proposition 6.2. The universal deformations and material preferred directions of incompressible monoclinic
Cauchy elasticity are identical to those of incompressible monoclinic hyperelasticity.

7 Conclusions

In this paper, we analyzed universal deformations in compressible and incompressible anisotropic Cauchy
elastic solids. We showed that for transversely isotropic, orthotropic, and monoclinic materials, the sets of
universal deformations and universal material preferred directions coincide with those previously obtained in
the hyperelastic case. Thus, the existence of an energy function does not affect the form or characterization
of universal deformations and material preferred directions in Cauchy elasticity. This result establishes that
universal deformations and material preferred directions are independent of whether the constitutive law
is derived from a potential. These findings extend and generalize earlier results for isotropic solids to the
anisotropic setting. The present analysis provides a foundation for further exploration of universal defor-
mations in more general material frameworks, including non-Cauchy elastic solids, materials with residual
stress or microstructure, and generalized continua where additional internal variables appear.
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