

Available online at www.sciencedirect.com

ScienceDirect

Procedia Structural Integrity 12 (2018) 265–273

Structural Integrity

Procedia

www.elsevier.com/locate/procedia

AIAS 2018 International Conference on Stress Analysis

Bio-inspired solution for optimal adhesive performance

A. Papangelo^{*a,b}

^a*Politecnico di BARI. Department of Mechanics Mathematics and Management, Viale Japigia 182, 70126 Bari, Italy*

^b*Hamburg University of Technology, Department of Mechanical Engineering, Am Schwarzenberg-Campus 1, 21073 Hamburg, Germany*

Abstract

In recent years there has been a growing interest into high performance bioinspired adhesives. This communication focuses on the adhesive behavior of a rigid cylinder that indents an elastic layer coated on a rigid substrate. With the assumption of short range adhesive interactions (JKR type) the adhesive solution is obtained very easily starting from the adhesiveless one. We show that ultrastrong adhesion (up to theoretical material strength) can be reached in line contact by reducing the thickness of the layer, typically down to the nanoscale size, which suggests a new possible design for "optimal adhesion". Adhesion enhancement occurs as an increase of the actual pull-off force, which is further enhanced by Poisson's ratio effects in the case of nearly incompressible layer. The system studied could be an interesting geometry for an adhesive system, but also a limit case of the more general class of layered systems, or FGMs (Functionally Graded Materials). The model is well suited for analyzing the behavior of polymer layers coated on metallic substrates.

© 2018 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (<http://creativecommons.org/licenses/by-nc-nd/3.0/>)

Peer-review under responsibility of the Scientific Committee of AIAS 2018 International Conference on Stress Analysis.

Keywords: Adhesion; layer; JKR model; Adhesion enhancement;

1. Introduction

Adhesion is a very flourishing field in contact mechanics. Even if big steps forward have been undertaken, a lot remains to do. The fundamental solution of an adhesive sphere indenting an halfspace has been discussed long time ago leading to the very known solutions of JKR (Johnson et al., (1971)) and DMT (Derjaguin et al., (1975)), which, after Tabor (1977) paper, have been understood as the limit solutions for very soft (JKR) and very hard (DMT) contacting bodies. The situation for rough contact is instead much less clear and a big effort has been put by many researchers to unveil how rough contact behaves (Pastewka & Robbins (2014), Persson & Scaraggi, (2014), Joe et al. (2018), Ciavarella et al. (2017), Ciavarella & Papangelo (2018a), Ciavarella & Papangelo (2018b)). In the last decade many researchers have developed models and designed surfaces trying to imitate nature adhesive strategies,

* Corresponding author. Tel.: +39-080-596-2718

E-mail address: antonio.papangelo@poliba.it

which have been proved to be very effective. The two avenues that have been followed are based on patterned surfaces with dimples (McMeeking et al. (2010), Papangelo & Ciavarella (2017), Papangelo & Ciavarella (2018)) of pillars (Kim et al. (2006), Del Campo et al. (2007), Gorb et al. (2007)). In this note we are studying a possible way to optimize adhesion devices by reducing length scales involved in the geometry (Gao & Yao, 2004). A significant amount of study has been devoted to the case of halfspace geometry, for which the optimal shape for maximum pulloff force is found to be concave, although it is not "robust" to surface geometry errors (Yao and Gao, 2006). Enhancement of adhesion due to surface geometries is also known in mushroom-shaped fibrils (Peng and Cheng, 2012), rodlike particles (Sundaram and Chandrasekar, 2011), or moving to functionally graded materials (FGMs) which are increasingly used in engineering, and have been also used in nature as a result of evolution (Suresh, 2001, Sherge & Gorb, 2001). Indeed, few authors have explored the behaviour of attachments using FGMs (Chen et al., 2009a, 2009b, Jin et al., 2013), finding interesting results and possible avenues to design "optimal" adhesive systems.

However, curiously a much simpler geometry (which is in a sense a limit case of FGM) is that of adhesion with a layer on a rigid foundation. In his well known book, Johnson (1985) suggested an elementary formulation to obtain asymptotic results for the contact pressure between a frictionless rigid indenter and a thin elastic layer supported by a rigid foundation. Jaffar (1989) later on used the same technique for the axisymmetric case, and finally Barber (1990) generalized it to the arbitrary, three-dimensional problem for the thin elastic layer.

A typical assumption made is that of the JKR model (Johnson et al., 1971) which corresponds to very short range adhesion where adhesive forces are all within the contact area. Solving the JKR problem is simple generalizing the original JKR energetic derivation assuming calculation of the strain energy in adhesiveless contact, and unloading at constant contact area (see Argatov et al. (2016), Popov et al. (2017), Willert et al. (2016), Ciavarella (2018)). The underlying assumption of (Ciavarella, 2017) is that the contact area distributions are the same as under adhesiveless conditions (for an appropriately increased normal load). There are no approximations involved if the geometry is that of a single line or axisymmetric contact, as the solution is exact within the JKR assumption of infinitely short adhesion range, and states that the indentation δ under adhesive conditions for a given surface energy w is

$$\delta = \delta_1 - \sqrt{2wA'/P_1''} \quad (1)$$

where δ_1 is the adhesiveless indentation, A' is the first derivative of contact area and P_1'' the second derivative of the adhesiveless load with respect to δ_1 . Then, the adhesive load is

$$P = P_1 - P_1' \sqrt{2wA'/P_1''} \quad (2)$$

Hence, the asymptotic solutions for the adhesive thin layer problems are found quite simply from the adhesiveless solutions of Johnson (1985), Jaffar (1989) and Barber (1990). In this work we will focus on the two-dimensional Hertzian problem, while the three dimensional case has been addressed in a previous work (Papangelo (2018)). We shall then discuss implications, and suggest potential strategies for "optimal" adhesive performance.

2. The model

2.1. Frictionless foundation

Following Johnson (1985), we assume that plane sections within the layer remain plane upon indentation, so that the in-plane displacements of the layer with components u_1, u_2 are independent of z (see Fig. 1). We transform the adhesionless solution into an adhesive one with no further approximation following (Ciavarella (2017)) and thus we

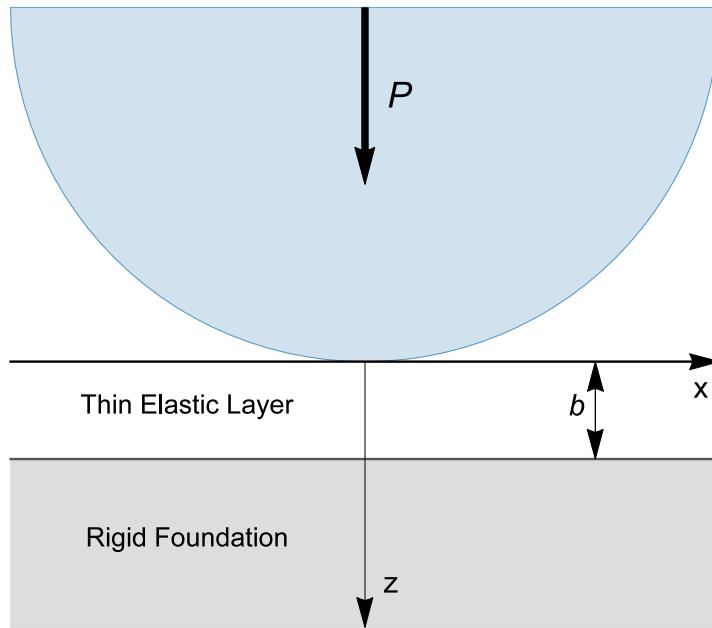


Fig. 1. The geometry for a rigid cylinder indenting a layer supported by a rigid foundation

simply retrieve the JKR adhesive solution applying (1, 2) in the case of a single line contact¹, hence the only hypothesis we made is the "thin layer", which we will check in the last section of this communication.

Let us consider (see Fig.1) a layer indented by a frictionless rigid cylinder of radius R , and assume the thickness of the layer b is small compared with the half-width of the contact size a , i.e. $b \ll a$, (thin layer assumption).

The adhesiveless solution gives for indentation δ_1 and load P_1 (Johnson, (1985))

$$\delta_1 = a^2/2R \quad (3)$$

$$P_1 = \frac{2}{3} \frac{E^* L}{Rb} a^3 = \frac{2^{5/2}}{3} \frac{E^* L R^{1/2}}{b} \delta_1^{3/2} \quad (4)$$

being E^* the plane strain elastic modulus, L the contact length, a the contact semi-width. For a given contact area $A = 2aL$, the adhesive solution is obtained with obvious algebra using (2)

$$P = \frac{4}{3} \frac{E^* L \sqrt{2R\delta_1}}{b} \left(\delta_1 - 3 \sqrt{\frac{b}{2E^*} w} \right) \quad (5)$$

in terms of the adhesionless indentation δ_1 . To find the minimum load (pull-off), the condition $P' = 0$ gives

$$\delta_{1,PO} = \sqrt{\frac{b}{2E^*} w} \quad ; \quad a_{PO} = \sqrt{2R} \left(\frac{b}{2E^*} w \right)^{1/4} \quad (6)$$

¹ With the same procedure also axisymmetric contacts can be solved exactly.

(where notice that we have to assume $a_{PO} \gg b$ to be consistent with the thin layer assumption), and hence substituting into (5)

$$P_{PO} = -\frac{8}{3} \frac{E^* L R^{1/2}}{(2b)^{1/4}} \left(\frac{w}{E^*} \right)^{3/4} \quad (7)$$

whereas the average stress in the contact at pull-off is

$$\sigma_{PO} = \frac{P_{PO}}{A_{PO}} = -\frac{2}{3} \sqrt{2} \left(\frac{E^* w}{b} \right)^{1/2} = -\frac{2}{3} \sqrt{2} \frac{K_{Ic}}{\sqrt{b}} \quad (8)$$

where K_{Ic} is toughness of the contact. Hence, notice that the JKR solution simply gives the Griffith condition imposed by a Stress Intensity Factor which scales only with the size the layer b and not any other length scale (like the radius of the punch). The interesting result is that as $b \rightarrow 0$ the limit of the force also goes to ∞ . Eq. (8) can be written in dimensionless form as

$$\frac{\sigma_{PO}}{\sigma_{th}} = -\frac{2}{3} \sqrt{2} \left(\frac{E^*}{\sigma_{th}} \right) \tilde{l}_a^{1/2} \quad (9)$$

where $\tilde{l}_a = \frac{w/E^*}{b}$ is a dimensionless adhesion parameter. Figure 2 shows how increasing \tilde{l}_a (for a given set of material constants this implies a reduction in the layer thickness b) the average pull-off stress is increased.

Since σ_{PO} will be bounded by theoretical strength, the situation is analogous to the well known case of a fibrillar structure in contact with a rigid halfspace, like that discussed for Gecko and many insects who have adopted nanoscale fibrillar structures on their feet as adhesion devices (Gao & Yao, 2004). In our case, to have a design insensitive to small variations in the tip shape, we would simply need to go down in the scale of the layer thickness. In fact, imposing $\sigma_{PO}/\sigma_{th} = -1$, we obtain a critical value for \tilde{l}_a , namely $\tilde{l}_{a,cr}$, above which the theoretical strength of the material is reached, which also defines, for fixed material properties, the order of magnitude of the "critical" thickness of the layer below which we expect theoretical strength

$$\tilde{l}_{a,cr} = \frac{9}{8} \left(\frac{\sigma_{th}}{E^*} \right)^2 \rightarrow b_{cr} = \frac{8}{9} \frac{E^* w}{\sigma_{th}^2} \quad (10)$$

Taking $w = 10 \text{ mJ/m}^2$, $\sigma_{th} = 20 \text{ MPa}$ and $E^* = 1 \text{ GPa}$, like done in (Gao & Yao, 2004), we estimate $\tilde{l}_{a,cr} = 4.5 \times 10^{-3}$ or $b_{cr} = \frac{8}{9} \frac{10^9 10^{-2}}{(20 \times 10^6)^2} = 22 \text{ nm}$, which is of the same lengthscale of the estimate (of a different geometry) of 64 nm robust design diameter of the fiber of the fibrillar structure. Hence, with this size of layer of nanoscopic scale, we would be able to devise a quite strong attachment for any indenter.

In the halfplane limit case, from Barquins (1988), Chaudhury et al. (1996) we have for the cylinder

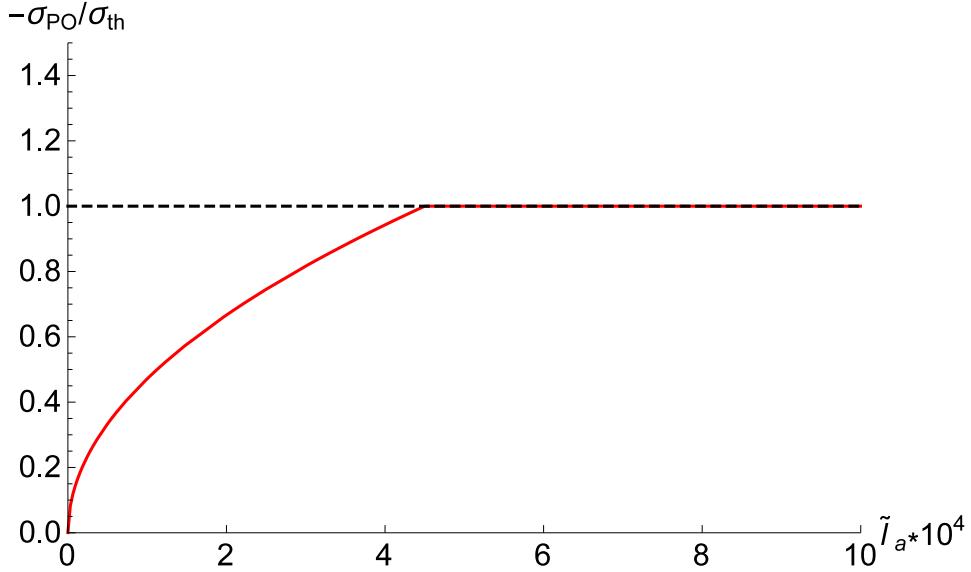


Fig. 2. Dimensionless pull-off stress versus the dimensionless adhesion parameter \tilde{l}_a . The average pull-off stress is bounded at $-\frac{\sigma_{PO}}{\sigma_{th}} = 1$.

$$P_{PO,HP} = -3L \left(\frac{\pi E^* w^2 R}{16} \right)^{1/3} ; \quad a_{PO,HP} = \left(\frac{2wR^2}{\pi E^*} \right)^{1/3} \quad (11)$$

$$\sigma_{PO,HP} = \frac{P_{PO,HP}}{A_{PO,HP}} = \frac{-3}{2} \left(\frac{\pi^2 E^{*2} w}{32R} \right)^{1/3} \quad (12)$$

which does include some dependence on elastic modulus which is not present in the axisymmetric halfspace problem of JKR model (Johnson et al., 1971), but it seems to be quite different in terms of power law dependence from the "layered" case. Indeed, take the ratio

$$\frac{P_{PO}}{P_{PO,HP}} = \frac{8}{9} \frac{16^{1/3}}{\pi^{1/3} 2^{1/4}} \frac{R^{1/6}}{b^{1/4}} \left(\frac{w}{E^*} \right)^{1/12} \quad (13)$$

which shows how there are really different power law dependences in the layer limit.

The full curve $P - \delta$ is then obtained using (1)

$$\delta = a^2/2R - \sqrt{2w \frac{b}{E^*}} \quad (14)$$

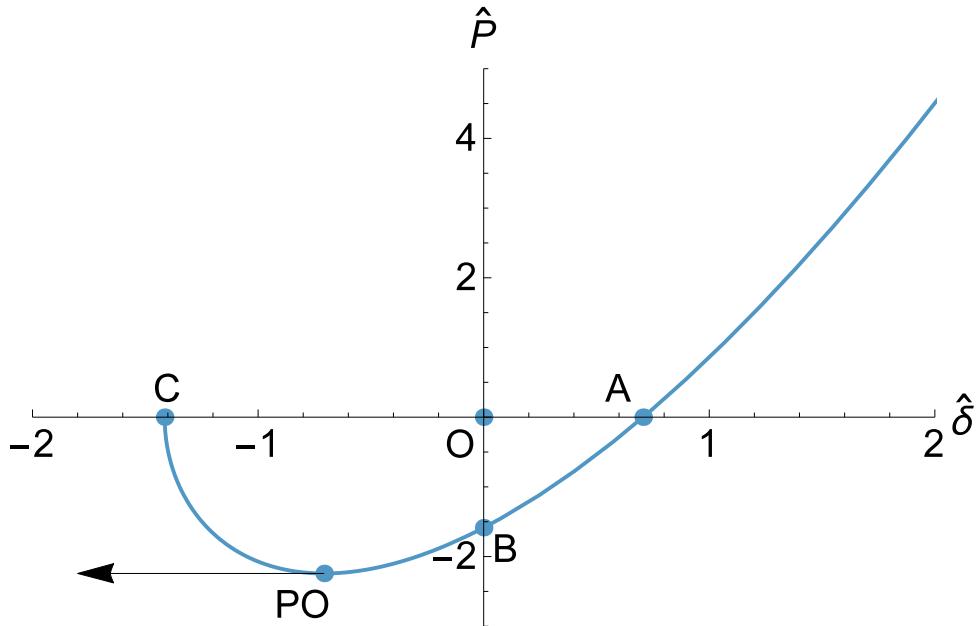


Fig. 3. Dimensionless load vs indentation curve for a rigid cylinder indenting a layer on a frictionless rigid foundation.

so extracting the equation for the contact area, using $\delta_1 = a^2/2R$, and then substituting back in the solution (5), we get

$$\hat{P} = \frac{4}{3} \sqrt{2} \left(\hat{\delta} + \sqrt{2} \right)^{1/2} \left(\hat{\delta} - \frac{1}{\sqrt{2}} \right) \quad (15)$$

where we have defined dimensionless quantities

$$\hat{\delta} = \frac{\delta}{\sqrt{w \frac{b}{E^*}}} \quad ; \quad \hat{P} = \frac{P}{\frac{E^* L R^{1/2}}{b^{1/4}} \left(\frac{w}{E^*} \right)^{3/4}} \quad (16)$$

so that $\hat{P}_{PO} = -\frac{8}{3\sqrt{2}^{1/4}} = 2.2424$ and $\hat{\delta}_{PO} = -\frac{\sqrt{2}}{2} = 0.707$.

Following Fig. 3, the solution is plotted in dimensionless terms. Starting from remote locations, one finds contact only when there is contact with the undeformed surfaces (JKR makes it not possible to model long range adhesion) and hence until point O (the origin of the coordinate system) is reached. Then under force control, one would obtain a jump to point B where force remains zero but one finds an effective indentation $\hat{\delta}_B$. From this point on, one could load in compression and go up in the figure, or start unloading that ends at the pull-off point "PO", with coordinates $(\hat{\delta}_{PO}, \hat{P}_{PO})$. Alternatively, if we were under displacement control, at the point of first contact we would build up adhesive force and jump to point "A". Unloading the indenter would proceed along the loading curve until the adhesive force is reduced back to zero in point "C". Hence, there is no pull-off under displacement control, contrary to the classical JKR case.

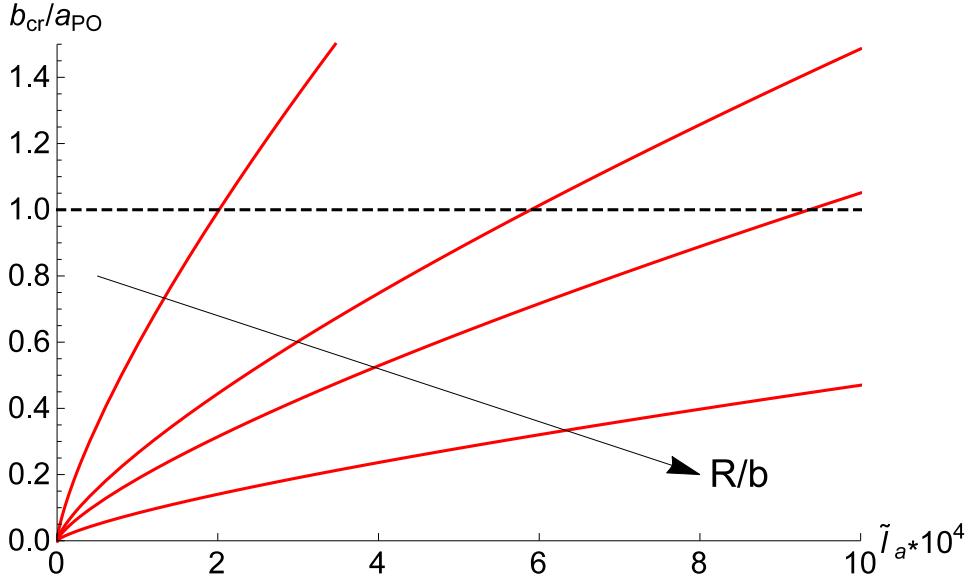


Fig. 4. The ratio $\frac{b_{cr}}{a_{PO}}$ is plotted versus \tilde{l}_a for $w = 10 \text{ mJ/m}^2$, $\sigma_{th} = 20 \text{ MPa}$ and $E^* = 1 \text{ GPa}$ and $R/b = [10, 50, 100, 500]$. The present analysis is valid for $b_{cr}/a_{PO} \ll 1$.

To ascertain the range of validity of the present analysis we finally check the thin layer assumption, which requires the thickness of the layer to be smaller than the contact semi-width. Using the same material properties introduced above, we estimate the ratio b_{cr}/a_{PO} as

$$\frac{b_{cr}}{a_{PO}} = \frac{8}{9 \times 2^{1/4}} \frac{\tilde{l}_a^{3/4}}{\sqrt{R/b} (\sigma_{th}/E^*)^2} \quad (17)$$

Eq. (17) is plotted in Fig. 4, for $R/b = [10, 50, 100, 500]$ and shows that the proposed design strategy is effective, in particular for indenters with characteristic dimension "R" much larger than the layer thickness. For example a micrometric pillar indenting a nanometric layer would experience high adhesive performance fulfilling the thin layer assumption.

2.2. Bonded layer

Repeating the arguments presented above for a bonded compressible layer (Johnson (1985)), one finds

$$P_{PO} = -\frac{8}{3} \frac{E^* L R^{1/2}}{(2b)^{1/4}} \frac{(1-\nu)^{1/2}}{2^{1/4} (1-2\nu)^{1/4}} \left(\frac{w}{E^*} \right)^{3/4} \quad (18)$$

$$a_{PO} = \sqrt{2R} \left(\frac{(1-2\nu)}{(1-\nu)^2} \frac{b}{E^*} w \right)^{1/4} \quad (19)$$

and therefore for the bonded layer the Poisson's effect appears, which only changes a prefactor in the result for the frictionless foundation — but notice this prefactor makes the load diverge towards the incompressible limit $\nu = 0.5$. Hence, in this case the average stress in the contact at pull-off is

$$\sigma_{PO} = \frac{P_{PO}}{A_{PO}} = -\frac{4}{3} \frac{(E^* w)^{1/2}}{b^{1/2}} \frac{1-\nu}{2(1-2\nu)^{1/2}} \quad (20)$$

and hence here by equating σ_{PO} to theoretical strength, we obtain

$$b_{cr} = \left[\frac{1}{2} \frac{(1-\nu)^2}{1-2\nu} \right] \frac{8}{9} \frac{E^* w}{\sigma_{th}^2} = \left[\frac{1}{2} \frac{(1-\nu)^2}{1-2\nu} \right] b_{cr, frictionless} \quad (21)$$

and therefore this time the critical layer thickness becomes dependent on Poisson's ratio, rendering the layer adhesive *much more effective*.

2.3. Incompressible bonded layer

The results of the previous paragraph hold until the layer is nearly incompressible, in which case a similar procedure yields

$$P_{PO} = -\frac{8}{5} L \frac{(3Rw)^{2/3}}{(2b)^{1/2}} w^{1/6} E^{*1/6} \quad (22)$$

and $\delta_{1,PO} = b \left(\frac{w}{3E^* R} \right)^{1/3}$ while $a_{PO} = \sqrt{6Rb \left(\frac{w}{3E^* R} \right)^{1/3}}$, which is therefore rather different from the frictionless counterpart. Hence, in this case the average stress in the contact at pull-off is

$$\sigma_{PO} = \frac{P_{PO}}{A_{PO}} = -\frac{2}{5} \frac{(3Rw^2 E^*)^{1/3}}{b} \quad (23)$$

and we return to see effects of the radius of the indenter (i.e. qualitative effects on the geometry) like in the halfplane problem.

3. Conclusions

In this communication, we show that ultrastrong adhesion can be reached in line contact for contact of a Hertzian indenter with ultrathin layers supported by a rigid foundation, suggesting a new possible strategy for "optimal adhesion". There are some details which differ in plane contact vs axisymmetric contact (see Papangelo (2018)): indeed, in line contact adhesion enhancement occurs as an increase of the actual pull-off force, while in the Hertzian axisymmetric case pull-off differs from the classical JKR halfspace solution only by a prefactor. However, in both cases the enhancement occurs because the dominant length scale for the stress intensity factor at the contact edge is the layer thickness, and this induces a reduction of the size of contact needed to sustain the pull-off force. These effects are remarkably further enhanced by Poisson's ratio effects in the case of nearly incompressible layer.

References

Argatov, I., Li, Q., Pohrt, R., Popov, V.L., (2016), Johnson-Kendall-Roberts adhesive contact for a toroidal indenter, Proceedings of the Royal Society A 472: 20160218.
 Barber, J. R. (1990). Contact problems for the thin elastic layer. International journal of mechanical sciences, 32(2), 129-132.

Barquins, M. (1988). Adherence and rolling kinetics of a rigid cylinder in contact with a natural rubber surface. *The Journal of Adhesion*, 26(1), 1-12.

Chaudhury, M. K., Weaver, T., Hui, C. Y., & Kramer, E. J. (1996). Adhesive contact of cylindrical lens and a flat sheet. *Journal of Applied Physics*, 80(1), 30-37.

Chen, S., Yan, C., and Soh, A., (2009a), "Adhesive Behavior of Two-Dimensional Power-Law Graded Materials, *International Journal of Solids and Structures*, 46, pp. 3398–3404.

Chen, S., Yan, C., Zhang, P., and Gao, H., (2009b), "Mechanics of Adhesive Contact on a Power-Law Graded Elastic Half-Space," *Journal of the Mechanics and Physics of Solids*, 57, pp.1437–1448.

Ciavarella, M. (2018). An approximate JKR solution for a general contact, including rough contacts. *Journal of the Mechanics and Physics of Solids*, 114, 209-218.

Ciavarella, M., & Papangelo, A., (2018a). A generalized Johnson parameter for pull-off decay in the adhesion of rough surfaces. *Physical Mesomechanics* 21, 67–75, <https://doi.org/10.1134/S1029959918010095>.

Ciavarella, M., & Papangelo, A. (2018b). A modified form of Pastewka–Robbins criterion for adhesion. *The Journal of Adhesion*, 94:2, 155-165, DOI: 10.1080/00218464.2017.1292139.

Ciavarella, M., Papangelo, A., & Afferante, L. (2017). Adhesion between self-affine rough surfaces: Possible large effects in small deviations from the nominally Gaussian case. *Tribology International*, 109, 435-440.

Del Campo, A., Greiner, C., & Arzt, E. (2007). Contact shape controls adhesion of bioinspired fibrillar surfaces. *Langmuir*, 23(20), 10235-10243.

Derjaguin, B. V., Muller V. M. & Toporov Y. P. (1975). Effect of contact deformations on the adhesion of particles. *Journal of Colloid and Interface Sci.*, 53, pp. 314–325

Gao, H., & Yao, H. (2004). Shape insensitive optimal adhesion of nanoscale fibrillar structures. *Proceedings of the National Academy of Sciences of the United States of America*, 101(21), 7851-7856.

Gorb, S., M. Varenberg, A. Peressadko, and J. Tuma, (2007). Biomimetic mushroom-shaped fibrillar adhesive microstructure. *Journal of The Royal Society Interface* 4, no. 13: 271-275.

Jaffar, M. J. (1989) Asymptotic behaviour of thin elastic layers bonded and unbonded to a rigid foundation. *International Journal of Mechanical Science* 31, 229 .

Jin, F., Guo, X., & Zhang, W. (2013). A unified treatment of axisymmetric adhesive contact on a power-law graded elastic half-space. *Journal of Applied Mechanics*, 80(6), 061024.

Joe, J., Thouless, M.D. , Barber, J.R. (2018), Effect of roughness on the adhesive tractions between contacting bodies, *Journal of the Mechanics and Physics of Solids*, 118, pp. 365-373, doi.org/10.1016/j.jmps.2018.06.005

Johnson, K. L., *Contact Mechanics*, (1985), pp. 138-141. Cambridge University Press, Cambridge.

Johnson, K. L., K. Kendall, and A. D. Roberts. (1971). Surface energy and the contact of elastic solids. *Proceedings of the Royal Society A*: 324. 1558.

Kim, S., and Sitti, M., (2006), Biologically inspired polymer microfibers with spatulate tips as repeatable fibrillar adhesives, *Applied physics letters* 89, no. 26: 261911.

McMeeking, R. M., Ma, L., & Arzt, E. (2010). Bi-Stable Adhesion of a Surface with a Dimple. *Advanced Engineering Materials*, 12(5), 389-397

Papangelo, A. (2018), Adhesion between a power-law indenter and a thin layer coated on a rigid substrate. *Facta Universitatis - Mechanical Engineering*,16, pp. 19-28, DOI: 10.22190/FUME180102008P

Papangelo, A., & Ciavarella, M. (2017). A Maugis–Dugdale cohesive solution for adhesion of a surface with a dimple. *Journal of The Royal Society Interface*, 14(127), 20160996.

Papangelo, A., & Ciavarella, M. (2018). Adhesion of surfaces with wavy roughness and a shallow depression. *Mechanics of Materials*, 118, 11-16.

Pastewka, L., & Robbins, M. O. (2014). Contact between rough surfaces and a criterion for macroscopic adhesion. *Proceedings of the National Academy of Sciences*, 111(9), 3298-3303.

Peng, Z., and Chen, S., (2012), "The Effect of Geometry on the Adhesive Behavior of Bio-Inspired Fibrils," *Soft Matter* 8, pp. 9864–9869.

Persson, B. N., & Scaraggi, M. (2014). Theory of adhesion: Role of surface roughness. *The Journal of chemical physics*, 141(12), 124701.

Popov, V., He, M., & Willert, E. (2017). *Handbuch der Kontaktmechanik. Exakte Lsungen axialsymmetrischer Kontaktprobleme*, Springer, Berlin. DOI: 10.1007/978-3-662-53011-5

Sherge, M., and Gorb, S., (2001), *Biological Micro- and Nano-Tribology- Nature's Solutions*, Springer, Berlin

Sundaram, N., and Chandrasekar, S., (2011), "Shape and Eccentricity Effects in Adhesive Contacts of Rodlike Particles," *Langmuir* 27, pp. 12405–12410

Suresh, S., (2001), "Graded Materials for Resistance to Contact Deformation and Damage," *Science*, 292, pp. 2447–2451.

Tabor, D. (1977). Surface forces and surface interactions. *Journal of colloid and interface science*, 58(1), 2-13.

Willert, E., Li, Q., Popov, V.L., (2016), The JKR-adhesive normal contact problem of axisymmetric rigid punches with a flat annular shape or concave profiles, *Facta Universitatis-Series Mechanical Engineering*, 14(3), pp. 281-292

Yao, H., & Gao, H. (2006). Optimal shapes for adhesive binding between two elastic bodies. *Journal of colloid and interface science*, 298(2), 564-572.