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Abstract 

During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, 
especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent 
degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict 
the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation 
company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model 
needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were 
obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D 
rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The 
overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a 
model can be useful in the goal of predicting turbine blade life, given a set of FDR data. 
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Abstract

In recent years there has been a growing interest into high performance bioinspired adhesives. This communication focuses on
the adhesive behavior of a rigid cylinder that indents an elastic layer coated on a rigid substrate. With the assumption of short
range adhesive interactions (JKR type) the adhesive solution is obtained very easily starting from the adhesiveless one. We show
that ultrastrong adhesion (up to theoretical material strength) can be reached in line contact by reducing the thickness of the layer,
typically down to the nanoscale size, which suggests a new possible design for ”optimal adhesion”. Adhesion enhancement occurs
as an increase of the actual pull-off force, which is further enhanced by Poisson’s ratio effects in the case of nearly incompressible
layer. The system studied could be an interesting geometry for an adhesive system, but also a limit case of the more general class of
layered systems, or FGMs (Functionally Graded Materials). The model is well suited for analyzing the behavior of polymer layers
coated on metallic substrates.
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1. Introduction

Adhesion is a very flourishing field in contact mechanics. Even if big steps forward have been undertaken, a lot
remains to do. The fundamental solution of an adhesive sphere indenting an halfspace has been discussed long time
ago leading to the very known solutions of JKR (Johnson et al., (1971)) and DMT (Derjaguin et al., (1975)), which,
after Tabor (1977) paper, have been understood as the limit solutions for very soft (JKR) and very hard (DMT)
contacting bodies. The situation for rough contact is instead much less clear and a big effort has been put by many
researchers to unveil how rough contact behaves (Pastewka & Robbins (2014), Persson & Scaraggi, (2014), Joe et
al. (2018), Ciavarella et al. (2017), Ciavarella & Papangelo (2018a), Ciavarella & Papangelo (2018b)). In the last
decade many researchers have developed models and designed surfaces trying to imitate nature adhesive strategies,
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which have been proved to be very effective. The two avenues that have been followed are based on patterned surfaces
with dimples (McMeeking et al. (2010), Papangelo & Ciavarella (2017), Papangelo & Ciavarella (2018)) of pillars
(Kim et al. (2006), Del Campo et al. (2007), Gorb et al. (2007)). In this note we are studying a possible way to
optimize adhesion devices by reducing length scales involved in the geometry (Gao & Yao, 2004). A significant
amount of study has been devoted to the case of halfspace geometry, for which the optimal shape for maximum
pulloff force is found to be concave, although it is not ”robust” to surface geometry errors (Yao and Gao, 2006).
Enhancement of adhesion due to surface geometries is also known in mushroom-shaped fibrils (Peng and Cheng,
2012), rodlike particles (Sundaram and Chandrasekar, 2011), or moving to functionally graded materials (FGMs)
which are increasingly used in engineering, and have been also used in nature as a result of evolution (Suresh, 2001,
Sherge & Gorb, 2001). Indeed, few authors have explored the behaviour of attachments using FGMs (Chen et al.,
2009a, 2009b, Jin et al., 2013), finding interesting results and possible avenues to design ”optimal” adhesive systems.

However, curiously a much simpler geometry (which is in a sense a limit case of FGM) is that of adhesion with a
layer on a rigid foundation. In his well known book, Johnson (1985) suggested an elementary formulation to obtain
asymptotic results for the contact pressure between a frictionless rigid indenter and a thin elastic layer supported by a
rigid foundation. Jaffar (1989) later on used the same technique for the axisymmetric case, and finally Barber (1990)
generalized it to the arbitrary, three-dimensional problem for the thin elastic layer.

A typical assumption made is that of the JKR model (Johnson et al., 1971) which corresponds to very short range
adhesion where adhesive forces are all within the contact area. Solving the JKR problem is simple generalizing the
original JKR energetic derivation assuming calculation of the strain energy in adhesiveless contact, and unloading at
constant contact area (see Argatov et al. (2016), Popov et al. (2017), Willert et al. (2016), Ciavarella (2018)). The
underlying assumption of (Ciavarella, 2017) is that the contact area distributions are the same as under adhesiveless
conditions (for an appropriately increased normal load). There are no approximations involved if the geometry is that
of a single line or axisymmetric contact, as the solution is exact within the JKR assumption of infinitely short adhesion
range, and states that the indentation δ under adhesive conditions for a given surface energy w is

δ = δ1 −
√

2wA′/P′′1 (1)

where δ1 is the adhesiveless indentation, A′ is the first derivative of contact area and P′′1 the second derivative of the
adhesiveless load with respect to δ1. Then, the adhesive load is

P = P1 − P′1
√

2wA′/P′′1 (2)

Hence, the asymptotic solutions for the adhesive thin layer problems are found quite simply from the adhesiveless
solutions of Johnson (1985), Jaffar (1989) and Barber (1990). In this work we will focus on the two-dimensional
Hertzian problem, while the three dimensional case has been addressed in a previous work (Papangelo (2018). We
shall then discuss implications, and suggest potential strategies for ”optimal” adhesive performance.

2. The model

2.1. Frictionless foundation

Following Johnson (1985), we assume that plane sections within the layer remain plane upon indentation, so that
the in-plane displacements of the layer with components u1, u2 are independent of z (see Fig. 1). We transform the
adhesionless solution into an adhesive one with no further approximation following (Ciavarella (2017)) and thus we
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Fig. 1. The geometry for a rigid cylinder indenting a layer supported by a rigid foundation

simply retrieve the JKR adhesive solution applying (1, 2) in the case of a single line contact1, hence the only hypothesis
we made is the ”thin layer”, which we will check in the last section of this communication.

Let us consider (see Fig.1) a layer indented by a frictionless rigid cylinder of radius R, and assume the thickness of
the layer b is small compared with the half-width of the contact size a, i.e. b << a, (thin layer assumption).

The adhesiveless solution gives for indentation δ1 and load P1 (Johnson, (1985))

δ1 = a2/2R (3)

P1 =
2
3

E∗L
Rb

a3 =
25/2

3
E∗LR1/2

b
δ3/21 (4)

being E∗ the plane strain elastic modulus, L the contact length, a the contact semi-width. For a given contact area
A = 2aL, the adhesive solution is obtained with obvious algebra using (2)

P =
4
3

E∗L
√

2Rδ1
b

δ1 − 3

√
b

2E∗
w

 (5)

in terms of the adhesionless indentation δ1. To find the minimum load (pull-off), the condition P′ = 0 gives

δ1,PO =

√
b

2E∗
w ; aPO =

√
2R
(

b
2E∗

w
)1/4

(6)

1 With the same procedure also axisymmetric contacts can be solved exactly.
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(where notice that we have to assume aPO >> b to be consistent with the thin layer assumption), and hence substituting
into (5)

PPO = −
8
3

E∗LR1/2

(2b)1/4

( w
E∗

)3/4
(7)

whereas the average stress in the contact at pull-off is

σPO =
PPO

APO
= −2

3

√
2
(

E∗w
b

)1/2
= −2

3

√
2

KIc√
b

(8)

where KIc is toughness of the contact. Hence, notice that the JKR solution simply gives the Griffith condition imposed
by a Stress Intensity Factor which scales only with the size the layer b and not any other length scale (like the radius
of the punch). The interesting result is that as b → 0 the limit of the force also goes to ∞. Eq. (8) can be written in
dimensionless form as

σPO

σth
= −2

3

√
2
(

E∗

σth

)
l̃1/2a (9)

where l̃a =
w/E∗

b is a dimensionless adhesion parameter. Figure 2 shows how increasing l̃a (for a given set
of material constants this implies a reduction in the layer thickness b) the average pull-off stress is increased.

Since σPO will be bounded by theoretical strength, the situation is analogous to the well known case of a fibrillar
structure in contact with a rigid halfspace, like that discussed for Gecko and many insects who have adopted nanoscale
fibrillar structures on their feet as adhesion devices (Gao & Yao, 2004). In our case, to have a design insensitive to
small variations in the tip shape, we would simply need to go down in the scale of the layer thickness. In fact, imposing
σPO/σth = −1, we obtain a critical value for l̃a, namely l̃a,cr, above which the theoretical strength of the material is
reached, which also defines, for fixed material properties, the order of magnitude of the ”critical” thickness of the
layer below which we expect theoretical strength

l̃a,cr =
9
8

(
σth

E∗

)2
→ bcr =

8
9

E∗w
σ2

th

(10)

Taking w = 10 mJ/m2, σth = 20 MPa and E∗ = 1 GPa, like done in (Gao & Yao, 2004), we estimate l̃a,cr = 4.5 × 10−3

or bcr =
8
9

10910−2

(20×106)2 = 22 nm, which is of the same lengthscale of the estimate (of a different geometry) of 64 nm robust

design diameter of the fiber of the fibrillar structure. Hence, with this size of layer of nanoscopic scale, we would be
able to devise a quite strong attachment for any indenter.

In the halfplane limit case, from Barquins (1988), Chaudhury et al. (1996) we have for the cylinder
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Fig. 2. Dimensionless pull-off stress versus the dimensionless adhesion parameter l̃a. The average pull-off stress is bounded at −σPO
σth
= 1.

PPO,HP = −3L
(
πE∗w2R

16

)1/3
; aPO,HP =

(
2wR2

πE∗

)1/3
(11)

σPO,HP =
PPO,HP

APO,HP
=
−3
2

(
π2E∗2w

32R

)1/3
(12)

which does include some dependence on elastic modulus which is not present in the axisymmetric halfspace problem
of JKR model (Johnson et al., 1971), but it seems to be quite different in terms of power law dependence from the
”layered” case. Indeed, take the ratio

PPO

PPO,HP
=

8
9

161/3

π1/321/4

R1/6

b1/4

( w
E∗

)1/12
(13)

which shows how there are really different power law dependences in the layer limit.
The full curve P − δ is then obtained using (1)

δ = a2/2R −
√

2w
b

E∗
(14)
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Fig. 3. Dimensionless load vs indentation curve for a rigid cylinder indenting a layer on a frictionless rigid foundation.

so extracting the equation for the contact area, using δ1 = a2/2R, and then substituting back in the solution (5), we get

P̂ =
4
3

√
2
(̂
δ +
√

2
)1/2 (
δ̂ − 1
√

2

)
(15)

where we have defined dimensionless quantities

δ̂ =
δ√
w b

E∗

; P̂ =
P

E∗LR1/2

b1/4

(
w
E∗

)3/4 (16)

so that P̂PO = − 8
3×21/4 = 2. 242 4 and δ̂PO = −

√
2

2 = 0.707 .
Following Fig. 3, the solution is plotted in dimensionless terms. Starting from remote locations, one finds contact

only when there is contact with the undeformed surfaces (JKR makes it not possible to model long range adhesion)
and hence until point O (the origin of the coordinate system) is reached. Then under force control, one would obtain
a jump to point B where force remains zero but one finds an effective indentation δ̂B. From this point on, one could
load in compression and go up in the figure, or start unloading that ends at the pull-off point ”PO”, with coordinates(̂
δPO, P̂PO

)
. Alternatively, if we were under displacement control, at the point of first contact we would build up

adhesive force and jump to point ”A”. Unloading the indenter would proceed along the loading curve until the adhesive
force is reduced back to zero in point ”C”. Hence, there is no pull-off under displacement control, contrary to the
classical JKR case.
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Fig. 4. The ratio bcr
aPO

is plotted versus l̃a for w = 10 mJ/m2, σth = 20 MPa and E∗ = 1 GPa and R/b = [10, 50, 100, 500] . The present analysis is
valid for bcr/aPO � 1.

To ascertain the range of validity of the present analysis we finally check the thin layer assumption, which requires
the thickness of the layer to be smaller than the contact semi-width. Using the same material properties introduced
above, we estimate the ratio bcr/aPO as

bcr

aPO
=

8
9 × 21/4

l̃3/4a√
R/b (σth/E∗)2 (17)

Eq. (17) is plotted in Fig. 4, for R/b = [10, 50, 100, 500] and shows that the proposed design strategy is effective,
in particular for indenters with characteristic dimension ”R” much larger that the layer thickness. For example a
micrometric pillar indenting a nanometric layer would experience high adhesive performance fulfilling the thin layer
assumption.

2.2. Bonded layer

Repeating the arguments presented above for a bonded compressible layer (Johnson (1985)), one finds

PPO = −
8
3

E∗LR1/2

(2b)1/4

(1 − ν)1/2

21/4 (1 − 2ν)1/4

( w
E∗

)3/4
(18)

aPO =
√

2R
(

(1 − 2ν)
(1 − ν)2

b
E∗

w
)1/4

(19)

and therefore for the bonded layer the Poisson’s effect appears, which only changes a prefactor in the result for the
frictionless foundation — but notice this prefactor makes the load diverge towards the incompressible limit ν = 0.5.
Hence, in this case the average stress in the contact at pull-off is
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σPO =
PPO

APO
= −4

3
(E∗w)1/2

b1/2

1 − ν
2 (1 − 2ν)1/2 (20)

and hence here by equating σPO to theoretical strength, we obtain

bcr =

[
1
2

(1 − ν)2

1 − 2ν

]
8
9

E∗w
σ2

th

=

[
1
2

(1 − ν)2

1 − 2ν

]
bcr, f rictionless (21)

and therefore this time the critical layer thickness becomes dependent on Poisson’s ratio, rendering the layer adhesive
much more effective.

2.3. Incompressible bonded layer

The results of the previous paragraph hold until the layer is nearly incompressible, in which case a similar procedure
yields

PPO = −
8
5

L
(3Rw)2/3

(2b)1/2 w1/6E∗1/6 (22)

and δ1,PO = b
(

w
3E∗R

)1/3
while aPO =

√
6Rb
(

w
3E∗R

)1/3
, which is therefore rather different from the frictionless counter-

part. Hence, in this case the average stress in the contact at pull-off is

σPO =
PPO

APO
= −2

5
(3Rw2E∗)1/3

b
(23)

and we return to see effects of the radius of the indenter (i.e. qualitative effects on the geometry) like in the halfplane
problem.

3. Conclusions

In this communication, we show that ultrastrong adhesion can be reached in line contact for contact of a Hertzian
indenter with ultrathin layers supported by a rigid foundation, suggesting a new possible strategy for ”optimal adhe-
sion”. There are some details which differ in plane contact vs axisymmetric contact (see Papangelo (2018)): indeed,
in line contact adhesion enhancement occurs as an increase of the actual pull-off force, while in the Hertzian axisym-
metric case pull-off differs form the classical JKR halfspace solution only by a prefactor. However, in both cases the
enhancement occurs because the dominant length scale for the stress intensity factor at the contact edge is the layer
thickness, and this induces a reduction of the size of contact needed to sustain the pull-off force. These effects are
remarkably further enhanced by Poisson’s ratio effects in the case of nearly incompressible layer.
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