

IOSO Global Optimization software benchmarking from Japan

All examples are taken from two public sources (written in Japanese):

- 1) Global Optimization by Generalized Random Tunneling Algorithm (2nd Report:

 Examination on the accuracy of solution and its efficiency) Satoshi KITAYAMA and
 Koetsu YAMAZAKI Department of Human & Mechanical Systems Engineering.
 Kanazawa University 2-40-20, Kodatsuno, Kanazawa, Ishikawa, 920-8667, Japan
- 2) Global Optimization by Generalized Random Tunneling Algorithm (5th Report: Approximate Optimization Using RBF Network) Satoshi KITAYAMA, Masao ARAKAWA, Koetsu YAMAZAKI Department of Human & Mechanical Systems Engineering, Kanazawa University Kakuma-machi, Kanazawa, 920-1192, Japan

Example 1 Task formulation

$$f(\mathbf{x}) = \frac{1}{2} \sum_{i=1}^{2} (x_i^4 - 16x_i^2 + 5x_i) \rightarrow \min$$

$$g_1(\mathbf{x}) = x_1^2 + x_2^2 - 9 \le 0$$

Position of global optimum is

$$(x_1, x_2)^T = (-2.121, -2.121)^T$$

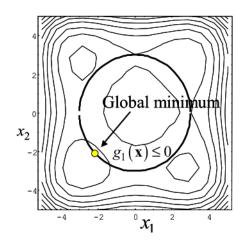
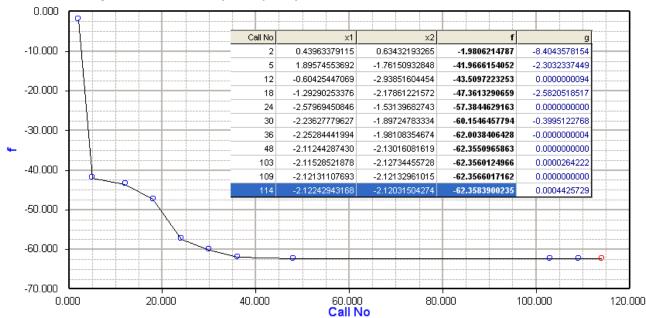


Fig1 Contour of functions and the position of global minimum

Result given by IOSO IOSO found the global solution easily and quickly



Electrozavodskaia St., 20, Moscow, 107023, Russia Phone/fax +7 (495) 788-1060 www.iosotech.com

Example 2 Task formulation

$$f(\mathbf{x}) = -x_1 - x_2 \rightarrow \min$$

$$g_1(\mathbf{x}) = -2 - 2x_1^4 + 8x_1^3 - 8x_1^2 + x_2 \le 0$$

$$g_2(\mathbf{x}) = -36 - 4x_1^4 + 32x_1^3 - 88x_1^2 + 96x_1 + x_2 \le 0$$

$$0 \le x_1 \le 3$$
, $0 \le x_2 \le 4$

Position of global optimum is

$$(x_1, x_2)^T = (2.329, 3.178)^T$$

where
$$f = -5.508$$

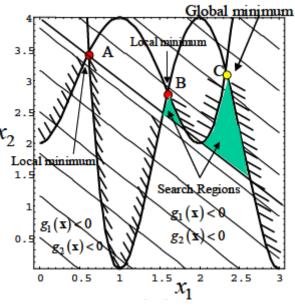
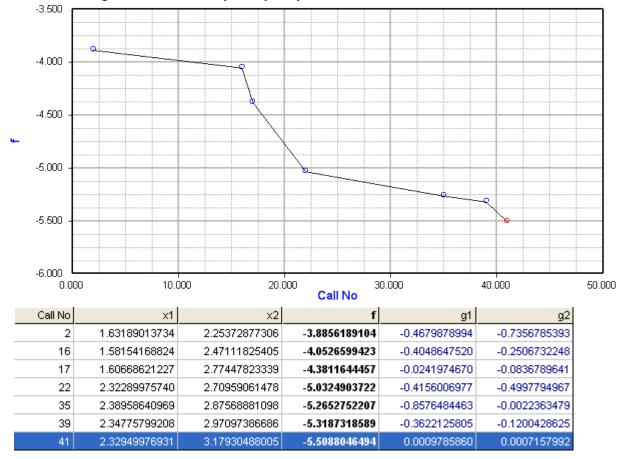


Fig2 Contour of functions and the position of global minimum

Result given by IOSO

IOSO found the global solution easily and quickly



Electrozavodskaia St., 20, Moscow, 107023, Russia Phone/fax +7 (495) 788-1060 www.iosotech.com

Example 3 (Infeasible region) Task formulation

$$f(x) = -(x_1 - 10)^2 - (x_2 - 15)^2 \rightarrow \min$$

$$g_1(\mathbf{x}) = (x_2 - \frac{5.1}{4\pi^2}x_1^2 + \frac{5}{\pi}x_1 - 6)^2$$

$$+10(1-\frac{1}{8\pi})\cos x_1 + 5 \le 0$$

$$-5 \le x_1 \le 10$$

$$0 \le x_2 \le 15$$

Global solution

$$\mathbf{x}_G = (3.271, 0.0496)^T$$

$$f(\mathbf{x}_G) = -268.788$$

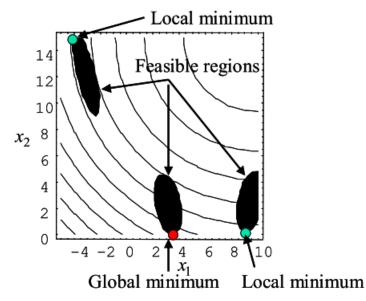
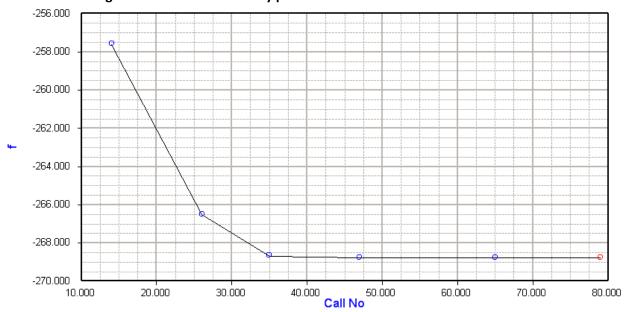


Fig3 Feasible regions and global minimum

Result given by IOSO

IOSO found the global solution without any problem



Call No	x1	x2	f	g
14	3.55730782652	0.29978728294	-257.6045363690	-0.9842157029
26	3.30728610143	0.10928877845	-266.5257000117	-0.3088396462
35	3.28327450640	0.04733077926	-268.6967181812	-0.0124714240
47	3.27348659581	0.04884416175	-268.7830434764	-0.0007753050
65	3.27326731739	0.04874772389	-268.7888772072	0.0000532778
79	3.28014793070	0.04559708770	-268.7905782967	0.0005596130

Electrozavodskaia St., 20, Moscow, 107023, Russia Phone/fax +7 (495) 788-1060 www.iosotech.com

Example 4 (to minimize weight of spring-coil) Task formulation

$$f(\mathbf{x}) = (2 + x_3)x_1^2 x_2 \to \min$$

 $g_1(\mathbf{x}) = 1 - x_2^3 x_3 / (71785x_1^4) \le 0$

$$g_2(x) = \frac{4x_2^2 - x_1x_2}{12566(x_2x_1^3 - x_1^4)} + \frac{1}{5108x_1^2} - 1 \le 0$$

$$g_3(\mathbf{x}) = 1 - 140.45x_1/(x_2^2x_3) \le 0$$

$$g_4(\mathbf{x}) = (x_1 + x_2)/1.5 - 1 \le 0$$

$$0.05 \le x_1 \le 2.00$$

$$0.25 \le x_2 \le 1.30$$

$$2.00 \le x_3 \le 15.0$$

esign Variables	Best solutions found					
esign variables	Arora ⁽¹⁸⁾	Coello ⁽¹⁹⁾	Ray ⁽²⁰⁾	Hu ⁽²¹⁾	Kitavama	
$x_1(d)$	0.053396	0.051480	0.050417	0.051466	0.052062	
$x_2(D)$	0.399180	0.351661	0.321532	0.351384	0.337205	
$x_3(N)$	9.185400	11.632201	13.979915	11.608659	13.831074	
$g_1(x)$	0.000019	-0.002080	-0.001926	-0.003336	-0.005994	
$g_2(x)$	-0.000018	-0.000110	-0.012944	-0.000110	-0.062925	
$g_3(x)$	-4.123832	-4.026318	-3.899430	-4.026318	-3.649392	
$g_4(x)$	-0.698283	-0.731239	-0.752034	-0.731324	-0.740489	
f(x)	0.012730	0.012705	0.013060	0.012667	0.014469	

Table 1 Comparison of the results Various results are presented by various scientists for comparison (the result found by Hu is the best one)

Result given by IOSO

IOSO easily found the global solution that is the same as given by Hu

