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Victor Lefèvre · K. Ravi-Chandar · Oscar Lopez-Pamies

Received: date / Accepted: date

Abstract The viewpoint that cavitation in rubber — that is, the sudden growth of inherent defects
in rubber into large enclosed cavities in response to external stimuli — is a purely elastic phenomenon
has long been known to be fundamentally incomplete. Essentially, this is because the local stretches
around the defects at which cavitation initiates far exceed the elastic limit of the rubber, which therefore
ought to inelastically deform by fracturing to accommodate their growth. Yet, rather remarkably, the
classical heuristic elastic criterion stating that cavitation occurs at material points wherein the hydrostatic
component of the stress reaches the critical value P = 5/2µ, with µ denoting the initial shear modulus of
the rubber, has been shown to agree reasonably well with a number of experimental observations. This
agreement suggests that the elastic properties of rubber may play a significant — possibly even dominant
— role on the occurrence of cavitation.

The purpose of this paper is to provide insight into the relevance of the elastic properties of rubber
on the phenomenon of cavitation. To this end, the comprehensive elastic cavitation theory recently put
forward by Lopez-Pamies et al. (2011a) is directly confronted to two classical sets of experiments that
to date have been understood only in part: (i) the poker-chip experiments of Gent and Lindley (1959)
and (ii) the experiments of Gent and Park (1984) dealing with cavitation near reinforcing filler particles.
Specifically, both sets of experiments are theoretically reproduced under the assumptions that the under-
lying rubber is Gaussian (for any arbitrarily large deformation) and that its inherent defects are vacuous
and isotropically distributed. Results are presented for when and where cavitation occurs in the specimens
as well as for the ensuing growth and interaction of the cavities once they have been “nucleated”. It is
found that the elastic theoretical results are in good agreement with many of the qualitative but few of
the quantitative features of the experiments. The reasons behind this remarkable partial agreement and
its practical implications are discussed.
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1 Introduction

Under certain conditions, large enclosed cavities may suddenly “appear” in the interior of rubber. This
phenomenon has come to be popularly known as cavitation. It corresponds, at heart, to nothing more than
to the growth of defects inherent in rubber. Such defects can be of various natures (e.g., weak regions of
the polymer network, actual holes, particles of dust) and of various geometries ranging from submicron to
supramicron in length scale (Gent, 1991). Roughly speaking, when rubber is subjected to critically large
mechanical (or possibly other type of) forces, these underlying defects may suddenly grow elastically up
to the point at which the surrounding polymeric chains reach their maximum elongation. Beyond that
point, the defects may continue to grow inelastically by a fracture process, i.e., by the irreversible creation
of new surfaces.

As a first theoretical attempt to explain and describe cavitation in rubber, Gent and Lindley (1959)
proposed to consider the initiation of cavitation as an elastic instability. In essence, they examined the
elastostatics problem of a single vacuous spherical cavity of infinitesimal size (or defect) embedded at the
center of a Gaussian (i.e., Neo-Hookean) rubber ball that is subjected to uniform hydrostatic pressure
on its outer boundary. Under the idealization that rubber remains an elastic solid for arbitrarily large
deformations — in other words, under the assumption that the defect can only grow elastically — they
found that as the applied pressure approaches the critical value

P =
5

2
µ, (1)

where µ denotes the initial shear modulus of the rubber at zero strain, the size of the cavity suddenly
becomes finite. Based on this result, Gent and Lindley (1959) postulated that cavitation ensues at any
point in the interior of rubber at which the hydrostatic component of the stress reaches the critical value
(1). In a later effort, Ball (1982) formalized and extended the result (1) to arbitrary incompressible isotropic
nonlinear elastic solids (not just Neo-Hookean). This more general result reads as

P =

∫ ∞

1

1

z3 − 1

dϕ

dz

(
z−2, z, z

)
dz, (2)

where ϕ = ϕ(λ1, λ2, λ3) stands for the stored-energy function of the solid in terms of the principal stretches
λ1, λ2, λ3. The unbounded upper limit of integration in (2) reveals that the onset of cavitation depends on
the behavior of the rubber at infinitely large deformations. While mathematically profound, this, of course,
is physically incongruous since rubber behaves approximately as an elastic solid up to a critical set of large
but finite deformations, beyond which, much like any other solid, it ruptures. Based on this observation,
one might expect that the result (1), or more generally (2), is not applicable to real rubber. Yet, the result
(1) has been shown by Gent and co-workers (see Gent, 1991 and references therein) to agree reasonably
well with a number of experimental observations. This agreement suggests that the elastic properties of
rubber may play a significant — possibly even dominant — role on the onset of cavitation.

Motivated by the plausible prominence that the elastic properties of rubber may have on cavitation,
Lopez-Pamies et al. (2011a) have recently developed a theory that permits to examine, now in full gener-
ality, the occurrence of cavitation as an elastic instability. In particular, generalizing the classical results
referred to above, this new theory allows to rigorously consider onset of cavitation (i) under arbitrary
loading conditions (not just hydrostatic loading), (ii) for general nonlinear elastic solids (not just incom-
pressible and isotropic), and (iii) distributions of defects with general shapes (not just a single spherical
defect). The objective of this paper is to confront this theory directly to experimental results in order to
gain definite insight into the relevance of the elastic properties of rubber on the phenomenon of cavitation;
comparisons of similar nature between the “hydrostatic” cavitation criterion of Gent and Lindley (1959)
and experiments have been provided earlier by Stringfellow and Abeyaratne (1989).

The organization of the paper is as follows. Section 2 recalls the elastic cavitation theory of Lopez-
Pamies et al. (2011a) for the practically relevant case when the underlying defects at which cavitation
can initiate are vacuous and their spatial distribution is random and isotropic. The specialization of
this result to the basic case when the rubber is Gaussian is spelled out in subsection 2.1.1. Section 3
compares this latter theoretical result with the poker-chip experiments of Gent and Lindley (1959). Section
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4 further compares the theory with the experiments of Gent and Park (1984) dealing with cavitation near
reinforcing filler particles. For both sets of comparisons, the theoretical results are first presented for the
onset of cavitation and then for the subsequent growth and interaction of the cavities once they have been
“nucleated”. Section 5 records some concluding remarks.

2 The elastic cavitation theory of Lopez-Pamies et al. (2011)

Stimulated by experimental evidence (Gent, 1991) and the partial success of the classical theoretical
results (1)–(2), Lopez-Pamies et al. (2011) considered the phenomenon of cavitation in rubber as the
sudden elastic growth of its underlying defects in response to critically large applied external loads. The
defects at which cavitation can initiate were modeled as nonlinear elastic cavities of zero volume, but
of arbitrary shape otherwise, that are randomly distributed throughout the rubber. This point of view
led to formulating the problem of cavitation as the homogenization problem of nonlinear elastic solids
containing zero-volume cavities (Lopez-Pamies, 2009), which in turn led to the construction of a general
— yet computationally tractable — rigorous criterion for the onset of cavitation.

2.1 The case of a random isotropic distribution of vacuous defects

The purpose of this work is to confront this new theory to a host of experiments where, due to the
processing of the specimens, the spatial distribution of defects is expected to be random and isotropic.
We shall further assume that the defects are vacuous. Granted these geometric and constitutive features
for the defects, the onset-of-cavitation criterion of Lopez-Pamies et al. (2011) can be stated as follows:

Inside a rubber whose nonlinear elastic response is characterized by the stored-energy function
W (F), cavitation can first occur at material points where the Cauchy stress T satisfies the condition

T =
1

detF
S⋆(F)FT with F ∈ ∂Z [f⋆(F)] , (3)

where ∂Z[f⋆(F)] denotes the boundary of the zero set of f⋆(F),

f⋆(F)
.
= lim

f0→0+
f(F, f0) and S⋆(F)

.
= lim

f0→0+

∂E

∂F
(F, f0). (4)

Here, the scalar functions E(F, f0) and f(F, f0) are defined by the initial-value problems

f0
∂E

∂f0
− E − 1

4π

∫
|ξ|=1

max
ω

[
ω · ∂E

∂F
ξ −W (F+ ω ⊗ ξ)

]
dξ = 0 with E(F, 1) = 0 (5)

and

f0
∂f

∂f0
− f − f

4π

∫
|ξ|=1

ω · F−T ξ dξ − 1

4π

∫
|ξ|=1

ω · ∂f
∂F

ξ dξ = 0 with f(F, 1) = 1, (6)

where ω in (6) denotes the maximizing vector ω in (5).

The function E defined by the first-order nonlinear pde (5) corresponds to the total elastic energy
(per unit undeformed volume) characterizing the homogenized constitutive response of a nonlinear elastic
solid with stored-energy function W containing a certain isotropic distribution of disconnected vacuous
cavities of initial volume fraction f0. The function f defined by the first-order linear pde (6), on the other
hand, characterizes the evolution of the volume fraction of the cavities along finite-deformation loading
paths. The asymptotic behavior (4) of these functions — in the limit as f0 → 0+ when the underlying
cavities become point defects — are the quantities that serve to identify the critical stresses (3) at which
cavitation ensues.
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2.1.1 Onset of cavitation in Gaussian rubber

In all of the comparisons with experiments that follow, we shall assume that the nonlinear elastic response
of rubber is Gaussian (or Neo-Hookean) and thus characterized by the stored-energy function

W (F) =

{ µ

2
[F · F− 3] if detF = 1

+∞ otherwise
, (7)

where, again, µ stands for the initial shear modulus of the specific rubber under investigation. For this
type of behavior, the limiting functions (4) can be shown to be given by

f⋆(F) = 1− 1

detF
and S⋆(F) = µF+

µ(1 + 2 detF)

2(detF)1/3
Φ(F)F−T +

3µ(detF− 1)

2(detF)1/3
∂Φ

∂F
(F), (8)

where the function Φ is defined implicitly by a first-order nonlinear pde in two variables (see Section 3.1
and Appendix C in Lopez-Pamies et al., 2011b). It is such that Φ(QFK) = Φ(F) ∀Q,K ∈ Orth+ and
0 < Φ(F) ≤ 1 with Φ(Q) = 1 ∀Q ∈ Orth+ and Φ(F) → 0 as ||F|| → 0,+∞. For all practical purposes,
as discussed in Section 6 of Lopez-Pamies et al. (2011b), the function Φ may be approximated simply as
being equal to its maximum value Φ(F) = 1. By making use of this approximation, it is not difficult to
deduce that the cavitation criterion (3)–(6) reduces in this case to:

Inside Gaussian rubber, cavitation can first occur at material points where the principal Cauchy
stresses ti (i = 1, 2, 3) satisfy the condition

8t1t2t3 − 12µ(t1t2 + t2t3 + t3t1) + 18µ2(t1 + t2 + t3)− 35µ3 = 0 with ti >
3

2
µ. (9)

The interested reader is referred to Lopez-Pamies et al. (2011b) for the derivation and thorough
discussion of the criterion (9). Here, it is relevant to record for later reference that for states of purely
dilatational stress when t1 = t2 = t3 = P , the general criterion (9) reduces, rather remarkably1, to the
approximate “hydrostatic” criterion proposed by Gent and Lindley (1959):

1

3
(t1 + t2 + t3)−

5

2
µ = 0. (10)

For more complex states of stress with non-vanishing shear (τ1
.
= t2 − t1 ̸= 0 and/or τ2

.
= t3 − t1 ̸= 0), the

general criterion (9) — as opposed to the hydrostatic criterion (10) — indicates that cavitation occurs at
mean stress values P = (t1 + t2 + t3)/3 > 5/2µ. In other words, shear stresses stabilize the rubber in the
sense that their presence postpones the onset of cavitation.

3 Comparison of the theory with the poker-chip experiments of Gent and Lindley (1959)

In a seminal contribution, Gent and Lindley (1959) reported a beautiful set of experiments where cavitation
was induced within thin disks of rubber bonded to metal plates subjected to unixaxial tensile forces.
Specifically, the test-pieces were made up of thin disks of (filled and unfilled) natural rubber bonded
to circular metallic plates by means of cement during the vulcanization process. The rubber disks were
R = 1 cm in initial radius and from H = 0.056 cm to H = 0.980 cm in initial thickness (hence their name
“poker-chip” experiments). The load was applied quasistatically under displacement control by means of
a tensometer, which provided measurements of the load f induced by a given applied displacement h−H.
Gent and Lindley (1959) reported these raw measurements in terms of the “macroscopic” stress measure
σ

.
= f/(πR2) and the “macroscopic” strain measure ε

.
= h/H − 1. Figure 1 depicts a schematic of the

geometry and deformation of the specimens with the various quantities of interest indicated.

1 Again, equation (10), as derived by Gent and Lindley (1959), corresponds to the case of a single defect that is vacuous
and spherical in shape. By contrast, the result (9) corresponds to a random isotropic distribution of vacuous defects (not
just one, but a distribution of infinitely many) which are not necessarily spherical in shape. Section 5 of Lopez-Pamies et al.
(2011a) elaborates further on such a remarkable connection between the cavitation criterion (3)–(6) and the results of Gent
and Lindley (1959) and of Ball (1982).
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Fig. 1 Schematic of the poker-chip experimental setup of Gent and Lindley (1959). The initial radius of the rubber disks
was fixed at R = 1 cm, while their initial thicknesses were varied from H = 0.056 cm to H = 0.980 cm in order to induce
stress fields with a wide range of triaxialities (from large for the thinnest disk to relatively small for the thickest one) inside
the rubber.

In the sequel, we report finite-element (FE) simulations of the experiments of Gent and Lindley (1959).
We begin in subsection 3.1 by showing when and where the cavitation criterion (9) is satisfied within three
representative rubber disks: (i) the thinnest disk with H = 0.056 cm, (ii) the moderately thick disk with
H = 0.190 cm, and (iii) the thickest disk with H = 0.980 cm, as a function of the applied macroscopic
strain ε. In subsection 3.2, we explicitly introduce defects — in the form of vacuous spherical cavities of
∆ = 1 µm radius — at the locations disclosed by the criterion into the FE models in order to investigate the
ensuing growth and interaction of the “nucleated” cavities upon further loading. We dedicate subsection
3.3 to comparing the simulations with the experiments.

3.1 Pointwise monitoring of the cavitation criterion

The FE model. Due to the constitutive and geometric symmetries of the problem, it suffices to perform the
calculations in just one half of a 2D-axisymmetric configuration of the rubber disk of interest; the metallic
plates are assumed to be constitutively rigid and bonded perfectly to the rubber. The geometry of such
regions is discretized via a uniform distribution of quadrilateral elements. Four-node hybrid linear elements
with constant pressure are utilized in order to handle the incompressible behavior of the Gaussian rubber
(7). Since the computations are carried out using the FE package ABAQUS, we make use of the CAX4H
hybrid elements available in this code (see ABAQUS Version 6.11 Documentation). Mesh sensitivity studies
reveal that structured meshes of this sort with a total number of elements in the order of 50,000 produce
sufficiently accurate results for any of the geometries of interest here (0.056 cm ≤ H ≤ 0.980 cm).

Results. Figure 2 shows the deformed configurations of the rubber disk with thickness H = 0.056 cm at
five values of the applied macroscopic strain, ε = 0, 0.2816, 0.2820, 0.2998, and 1.40%. Material points at
which the cavitation criterion (9) is satisfied are depicted in red. Incidentally, because of the extremely
small thickness of the disk, they happen to also roughly coincide with the material points at which the
hydrostatic cavitation criterion (10) is satisfied.

As indicated by arrows in Fig. 2(b), the first points to reach the cavitation criterion are those at the
rubber/plates interfaces along the centerline of the disk. This is because — in contrast to popular belief
in the literature — the hydrostatic stress in poker-chip experiments is always largest at the rubber/plates
interfaces along the centerline of the test-piece, and not at the center of the rubber disk. As the applied
strain ε increases, the region where the criterion is satisfied grows radially along the rubber/plates inter-
faces and also propagates to the center of the rubber disk reaching it at the value ε = 0.2820%; this is
shown by Fig. 2(c). As the applied strain ε increases even further, the region where the criterion is satisfied
continues to grow radially from the centerline of the disk towards its lateral free boundary. Figures 2(d)
and (e) illustrate two snapshots of this propagation.
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Fig. 2 Axisymmetric FE simulation of the poker-chip experiment with rubber disk thickness H = 0.056 cm. Parts (a)
through (e) show the deformed configurations of half (for better visualization) of the rubber disk at five values of the applied
macroscopic strain ε. The material points at which the cavitation criterion (9) is progressively satisfied are depicted in red.

Figure 3 shows the deformed configurations of the rubber disk with the larger thickness H = 0.190 cm
at four values of the applied macroscopic strain, ε = 0, 3.119, 3.181, and 5.30%. Material points at which
the cavitation criterion (9) is satisfied are again depicted in red. For comparison purposes, the points at
which the hydrostatic criterion (10) is satisfied are also depicted.

1 mm

General criterion Hydrostatic criterion

Fig. 3 Axisymmetric FE simulation of the poker-chip experiment with rubber disk thickness H = 0.190 cm. Parts (a)
through (d) show the deformed configurations of half (for better visualization) of the rubber disk at four values of the
applied macroscopic strain ε. The material points at which the general cavitation criterion (9) and the hydrostatic cavitation
criterion (10) — included for comparison purposes — are progressively satisfied are depicted in red.

In qualitative agreement with the preceding simulations for the thinnest test-piece, Figs. 3(b) through
(d) show that the first material points to satisfy the criterion (9) are those at the rubber/plates interfaces
along the centerline of the disk. The region where the criterion is satisfied then grows radially along
the rubber/plates interfaces and also to the center of the rubber disk. Ultimately, the region also grows
radially towards the lateral boundary of the disk, albeit at a significantly slower rate than in the thinnest
test-piece. Quantitatively, on the other hand, the results for this thicker rubber disk are quite different
from those shown in Fig. 2. As illustrated by Fig. 3(b), the first occurrence of cavitation takes place at
the much larger applied strain ε = 3.119% (compared to ε = 0.2816%). This, of course, is expected since
at equal values of the applied strain ε the hydrostatic stresses within the rubber decrease with increasing
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disk thickness H. By the same token, the local values of the shear stresses τ1 = t2− t1 and τ2 = t3− t1 are
much larger in the thicker disk and hence their influence on the onset of cavitation becomes noticeable.
The influence of the shear stresses can be visualized by comparing the cavitation results based on the
general criterion (9), shown in the left half of Fig. 3, with those based on the hydrostatic criterion (10),
shown in the right half of the figure.

1 mm

General

criterion

Hydrostatic

criterion

Fig. 4 Axisymmetric FE simulation of the poker-chip experiment with rubber disk thickness H = 0.980 cm. Parts (a)
through (d) show the deformed configurations of half (for better visualization) of the rubber disk at four values of the
applied macroscopic strain ε. The material points at which the general cavitation criterion (9) and the hydrostatic cavitation
criterion (10) — included for comparison purposes — are progressively satisfied are depicted in red.

Finally, Fig. 4 shows the deformed configurations of the thickest rubber disk with H = 0.980 cm at
the applied macroscopic strains ε = 0, 61.8, 102.3, and 144.5%. The qualitative and quantitative trends
pointed out above continue in the sense of when and where cavitation occurs as well as in that the local
values of hydrostatic stress are smaller and those of shear stresses much larger than in the two previous
cases with smaller H. Again, this latter point can be readily deduced by comparing the regions at which
the general (9) and hydrostatic (10) criteria are satisfied. In particular, Figs. 4(c) and (d) show that the
general criterion (9) remains unsatisfied away from the rubber/plates interfaces — never reaching the
center of the disk in fact — irrespectively of the applied macroscopic strain. By contrast, the hydrostatic
criterion (10) is satisfied almost everywhere for strains ε > 120%.
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3.2 Full-field simulations accounting for the growth of the defects

The preceding analysis has served to reveal the critical macroscopic loads and associated spatial locations at
which defects in rubber may start to grow to finite sizes during poker-chip experiments. In this subsection,
we investigate the extent to which they grow and how they interact with one another. To this end, we
introduce defects explicitly in the FE models at the locations disclosed by the criterion (9) and monitor
their growth. Here, defects are modeled as vacuous spherical cavities of initial radius ∆ = 1 µm. In this
regard, it is important to remark that we have performed a variety of simulations wherein the defects
are micron and submicron in size and spherical and non-spherical in shape. Interestingly, the results of
such simulations indicate that provided the defects are no larger than roughly 1 µm in length scale, their
specific shape and size do not significantly influence when and how they grow (at least during the poker-
chip simulations of interest here), hence our choice to model them as spherical cavities of initial radius
∆ = 1 µm.

3.2.1 Defects along the centerline of the rubber disk

Given that the attainability of the cavitation criterion (9) first occurs along the centerline of the rubber
disk at its top and bottom faces and then — provided that the test-piece is sufficiently thin — propagates
to its center, it is instructive to begin by considering the explicit presence of defects at those locations.

The FE model. Introducing spherical defects along the disk’s centerline does not perturb the geometric
symmetry of the problem and so — much like in the preceding analysis without defects — it suffices to
carry out the calculations in one half of a 2D-axisymmetric configuration of the rubber disk of interest.
As in the foregoing, four-node hybrid linear elements are utilized to discretize such regions with smaller
elements placed around the defects. Figure 5 shows details of a representative structured mesh for the
case when the defects are introduced at the top, bottom, and center of the disk: part (a) depicts the mesh
near the top defect, while part (b) depicts the mesh near the defect at the center. Note that the defects
at the top and bottom are positioned 1 µm away from the rubber/plates interfaces in order to be able to
mesh them appropriately.

Fig. 5 Details of the axisymmetric FE model for the poker-chip test-piece with rubber disk thickness H = 0.056 cm
containing three defects along its centerline: two at the rubber/plates interfaces and one at its center. Part (a) shows the
defect at the top rubber/plate interface, while part (b) shows the defect at the center of the rubber disk.

Results. Figure 6 shows results for the rubber disk with thickness H = 0.056 cm containing two and
three defects. Parts (a)–(c) and (g) correspond to results for the case when two defects are located at
the rubber/plates interfaces, whereas parts (d)–(f) and (h) correspond to the case when there is an
additional third defect located at the center of the disk. In particular, Figs. 6(a)–(f) illustrate the deformed
configurations of the rubber disk around its centerline at various values of the applied macroscopic strain ε;
the ratios vi/V and vc/V of current volumes vi and vc to initial volume V = 4/3π∆3 ≈ 4.19×10−18m3 of
the defects at the interfaces and center of the disk are also displayed in these figures to aid the visualization
of their growth. To further aid the quantitative understanding, Figs. 6(g) and (h) present corresponding
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Fig. 6 Axisymmetric FE simulations of the poker-chip experiment with rubber disk thickness H = 0.056 cm containing
defects along the centerline of the disk. Parts (a) through (c) and (g) show results when two defects are located at the
rubber/plates interfaces. On the other hand, parts (d) through (f) and (h) show results when there is an additional third
defect located at the center. Figures (a)–(f) depict the deformed configurations of the rubber disk around its centerline at
three values of the applied macroscopic strain ε, while (g) and (h) show plots of the normalized macroscopic stress σ/µ and
volume variation v/V of the defects as functions of ε.

plots of the normalized macroscopic stress σ/µ and volume variation v/V of the defects as functions of
the applied macroscopic strain ε.

When the only defects that are accounted for are those at the rubber/plates interfaces, such defects
start to grow to much larger sizes at around the critical strain ε = 0.2816% predicted by the criterion
(9). This is shown pictorially by Figs. 6(a)–(c) and quantitatively by Fig. 6(g). On the other hand, when
an additional defect at the center of the disk is also accounted for, Figs. 6(d)–(f) and (h) show that all
three defects start to grow at around the same strain (ε = 0.2816%), also as predicted by the criterion
(9), but then the growth localizes in the defect at the center while those at the interfaces essentially stop
growing. Such a strong interaction can be understood from the fact that the defects at the interfaces are
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Fig. 7 Axisymmetric FE simulation of the poker-chip experiment with rubber disk thickness H = 0.980 cm containing two
defects located at the rubber/plates interfaces along the centerline of the disk. Parts (a), (b), and (c) depict the deformed
configuration of half (for better visualization) of the rubber disk at three values of the applied macroscopic strain ε. Part (d)
shows plots of the normalized macroscopic stress σ/µ and volume variation v/V of the defects as functions of ε.

comparatively more constrained to grow because of the rigidity of the nearby metal plates. Accordingly, it
turns out to be energetically more favorable for the defect at the center to accommodate all of the growth.

The results in Fig. 6(h) also show that the macroscopic stress-strain relation for the rubber disk with
three defects softens significantly — when compared to that of the perfect rubber disk without defects —
right after the onset of cavitation. This is because of the geometric softening generated by the growth of
the defect at the center. Interestingly, Fig. 6(g) shows that the same is not true for the rubber disk with
defects only at the rubber/plates interfaces. This is consistent with the fact that the growth of defects
near the rubber/plates interfaces is energetically costly.

The behavior of the rubber disk with thickness H = 0.190 cm containing analogous two and three
defects along the centerline of the disk is essentially identical to that described in Fig. 6, and thus not
reported here. On the other hand, as expected by the much larger values of shear stresses involved, the
behavior of the disk with thickness H = 0.980 cm is quite different. This is shown by Fig. 7. Parts (a)–(c)
of the figure depict the deformed configurations of the rubber disk at the applied macroscopic strains
ε = 0, 65.0, and 83.9%. Guided by the results of Fig. 4, the disk contains two defects located at the
rubber/plates interfaces; their ratio vi/V of current volume vi to initial volume V = 4/3π∆3 ≈ 4.19 ×
10−18m3 is explicitly included to aid the visualization of their growth. Fig. 7(d) shows corresponding plots
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of the normalized macroscopic stress σ/µ and volume variation v/V of the defects in terms of the applied
strain ε. The key difference in the behavior of this thicker test-piece compared to its thinner counterparts
is that the defects at the interfaces do also start growing at around the critical strain (ε = 61.8%) predicted
by the criterion (9), but this growth is dramatically slower. Consistent with this behavior, as shown by
Fig. 7(d), the stress-strain relation of the disk with defects is also seen to be essentially identical to that
of the disk without defects. This suggests that — as expected from the common experience of stretching
a rubber band — internal defects in sufficiently thick rubber disks are inconsequential altogether for large
ranges of applied macroscopic strains.

To summarize, the above results indicate that defects near the rubber/plates interfaces along the
centerline of the rubber disk in poker-chip experiments always grow first. Also, if they were the only
defects in the rubber, they would ultimately grow to large sizes, albeit very slowly for thick disks. Once
defects at the center of the rubber are accounted for, the behavior of the interface defects changes radically,
but only provided that the stress triaxiality (i.e., the ratio of hydrostatic to shear stresses) is sufficiently
large at the center of the disk, namely, provided that the disk is sufficiently thin. In that case, the defect
at the center is the only one that ends up growing to a very large size. The results further indicate that
the growth of interface defects does not lead to significant softening of the overall mechanical response of
the poker-chip test-piece, whereas the growth of the defect at the center does.

3.2.2 Defects across the midplane of the rubber disk and near the rubber/plates interfaces

For sufficiently thin test-pieces, the attainability of the cavitation criterion (9) eventually propagates across
the larger part of the rubber disk (see Figs. 2 and 3). In this subsection, we thus consider the explicit
presence of defects across the rubber.

Fig. 8 3D FE model of the poker-chip test-piece with rubber disk thickness H = 0.056 cm containing 195 defects: (a) one
eighth of the rubber disk illustrating the mesh refinement around the midplane defects, (b)–(c) details of the defects located
in the midplane and the bottom rubber/plate interface of the disk along its centerline, and (d) detail of a defect located in
the midplane of the disk away from its centerline.

The FE model. Because of the extremely small size of the defects (1 µm in radius), the discretization
of the rubber disk explicitly containing defects is required to be in the form of a structured mesh. In
practice, this requirement forces the spatial distribution of defects in the simulations to exhibit some level
of periodicity thus preventing the consideration of a truly random distribution. For definiteness, based on
the results from the preceding subsection and preliminary studies of a variety of distributions, we consider
here that the defects are located within three planes: a plane adjacent (1 µm away) to the top rubber/plate
interface, a plane adjacent (1 µm away) to the bottom rubber/plate interface, and the midplane of the
rubber disk. Within each of these planes, 5 defects at radial distances 0, 0.25, 0.50, 0.75, and 0.95 cm from
their center are placed at angular intervals of π/8 radians. This amounts to a total of 65 defects per
plane, and thus a total of 195 defects in the entire rubber disk. Exploiting all inherent symmetries, the
calculations can be performed over just one thirty-second of the rubber disk of interest. A mesh generator
code is utilized to discretize such regions with eight-node hybrid linear elements with constant pressure
(C3D8H in ABAQUS). Figure 8 illustrates a representative mesh for the case of the rubber disk with
thickness H = 0.056 cm. Figure 8(a) shows one eighth of the entire disk for better visualization. Figures
8(b)–(d) show details of the mesh around the defects at various locations. Mesh sensitivity studies indicate
that meshes of this sort with around 40,000 elements are refined enough to produce accurate results.
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Fig. 9 3D FE simulation of the poker-chip experiment with rubber disk thickness H = 0.056 cm containing 195 defects
throughout the entire disk. Parts (a) through (h) show snapshots of one eighth (for better visualization) of the rubber disk
at eight values of the applied macroscopic strain ε. The top surface in the snapshots corresponds to the midplane of the disk.
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Fig. 10 3D FE simulation of the poker-chip experiment with rubber disk thickness H = 0.056 cm containing 195 defects
throughout the entire disk. Parts (a) through (d) show a 2D radial perspective of half of the rubber disk at four values of
the applied macroscopic strain ε. Parts (e) and (f) show plots of the volume variation of the midplane defects — labeled dm1 ,
dm2 , dm3 , dm4 , and dm5 as indicated in part (a) — and the normalized macroscopic stress σ/µ as functions of ε.

Results. Figure 9 displays the deformed configurations of (one eighth of) the rubber disk with thickness
H = 0.056 cm at the applied macroscopic strains ε = 0, 0.30, 0.43, 0.53, 1.00, 1.47, 1.61, and 2.30%. The
string of snapshots (a) through (h) show, from a 3D perspective, that the first defect to grow is the one
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located in the center of the disk and that, upon further loading, adjacent midplane defects successively
grow in a radial cascading sequence; as the exception, the defects closest to the lateral free boundary
of the disk do not grow. This seemingly intricate behavior can be readily understood from an energetic
standpoint. As already discussed within the context of Fig. 6, even though the cavitation criterion (9) is
first satisfied at the rubber/plates interfaces slightly before than at the center of the disk (see Fig. 2), it
is energetically more favorable for the defect at the center to accommodate all of the initial growth. As
the macroscopic strain ε increases and satisfaction of the criterion (9) propagates radially outwards (see
Fig. 2), it becomes energetically more favorable for the defects in the midplane of the disk adjacent to its
center — and not those near the rubber/plates interfaces — to then accommodate most of the growth at
the expense of the defect at the center. This radial cascading trend continues across the disk for increasing
strains all the way up to reaching a narrow region containing the lateral boundary of the disk. There, the
state of stress does not satisfy the criterion (9) and hence the underlying defects do not grow.

To aid the quantitative understanding of the above-described growth and interaction of defects and
also their effect on the overall mechanical response of the poker-chip test-piece, Figs. 10(a)–(d) show a 2D
radial perspective of half of the disk at various values of the applied macroscopic strain ε. Additionally,
Figs. 10(e) and (f) show corresponding plots of the volume variation v/V of the midplane defects and of
the normalized macroscopic stress σ/µ as functions of ε. For clarity of presentation, as marked in part
(a) of the figure, the defects are labeled in a sequential manner as dmi (i = 1, 2, ..., 5) with dm1 denoting
the defect at the center of the disk. Figures 10(a)–(e) distinctly illustrate the radial cascading nature of
the growth of the midplane defects with increasing loading. The primary observation from Fig. 10(f) is
that the growth of midplane defects entails a severe softening of the overall mechanical response of the
rubber disk; the response of the perfect rubber disk without defects is plotted in the same figure for direct
comparison. Again, since the rubber is assumed to remain elastic for arbitrarily large deformations, this
softening is purely geometrical in nature.

Next, we turn to examine the response of the disk with moderate thickness H = 0.190 cm. Akin to
Figs. 9–10, Figs. 11 and 12 show deformed configurations of such a disk from 3D and 2D perspectives at
various values of the applied macroscopic strain ε. They further show plots of the volume variation v/V
of the midplane defects and of the normalized macroscopic stress σ/µ as functions of ε. Again, as marked
in Fig. 12(a), the midplane defects are labeled dmi (i = 1, 2, ..., 5) in an orderly manner with dm1 denoting
the defect at the center of the disk.

In agreement with the simulations for the thinnest test-piece, Fig. 11 shows that the first defect to
grow to finite size is the one located at the center of the rubber disk and that, upon further loading, the
immediately adjacent row of defects in the midplane start to grow as well. Contrary to the simulations
for the thinnest test-piece, however, no further radial cascading growth occurs upon continuing loading.
Instead, the midplane defects adjacent to the center of the disk continue to accommodate most of the
subsequent growth, at least for a large range of applied macroscopic strains ε. Upon even further loading
(ε > 5%), the defect at the center restarts to grow rapidly yet again. This sequence of events can be more
clearly visualized from Figs. 12(a)–(d), and even more so from the plots shown in Fig. 12(e). Figure 12(f)
also shows that such a growth of midplane defects results in a significant softening of the macroscopic
stress-strain relation for the entire poker-chip test-piece.

In line with the physical motives behind the behavior of the thinnest rubber disk, the behavior of the
rubber disk with the moderate thickness H = 0.190 cm can be understood from an energetic perspective.
Indeed, while the cavitation criterion (9) is first satisfied at the rubber/plates interfaces along the centerline
of the disk slightly before than at the center of the disk (see Fig. 3), it is energetically more favorable for
the defect at the center to accommodate all of the growth, at least initially. As the macroscopic strain
ε increases and satisfaction of the criterion (9) propagates radially outwards (see Fig. 3), it becomes
energetically more favorable for the defects in the midplane of the disk just away from its center —
and, again, not those near the rubber/plates interfaces — to accommodate most of the growth. As the
macroscopic strain ε increases further, the criterion (9) continues to propagate radially outwards along
the midplane but at a much slower rate than in the case of the thinnest disk (compare Fig. 3 with Fig.
2). Accordingly, in contrast to the behavior of the thinnest disk, it continues to be energetically more
favorable for the midplane defects adjacent to the center of the disk to continue accommodating most of
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the growth at the expense of the defect at the center and of those downstream in the direction of the
lateral boundary, which remain small.

Fig. 11 3D FE simulation of the poker-chip experiment with rubber disk thickness H = 0.190 cm containing 195 defects
throughout the entire disk. Parts (a) through (d) show snapshots of one eighth (for better visualization) of the rubber disk
at four values of the applied macroscopic strain ε. The top surface in the snapshots corresponds to the midplane of the disk.
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Fig. 12 3D FE simulation of the poker-chip experiment with rubber disk thickness H = 0.190 cm containing 195 defects
throughout the entire disk. Parts (a) through (d) show a 2D radial perspective of half of the rubber disk at four values of
the applied macroscopic strain ε. Parts (e) and (f) show plots of the volume variation of the midplane defects — labeled dm1 ,
dm2 , dm3 , dm4 , and dm5 as indicated in part (a) — and the normalized macroscopic stress σ/µ as functions of ε.

Finally, as already discussed within the contexts of Figs. 4 and 7, the underlying defects in the thickest
rubber disk with H = 0.980 cm do not grow, other than slowly in neighborhoods of the rubber/plates
interfaces, to large sizes because the states of stress in most of the rubber disk do not reach the criterion
(9). No additional results for this case are thus reported here.
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In summary, the above results reveal that the defects that grow to large sizes in poker-chip test-pieces
with thin rubber disks are those located in the midplane of the disks, and not those near the rubber/plates
interfaces where the criterion (9) is satisfied first. This is because the midplane is farthest from the stiff
rubber/plates interfaces and thus it is the location where the growth of defects is energetically least costly.
More specifically, for thin enough rubber disks, growth of midplane defects starts at the center of the
disk and then propagates radially outwards in a cascading sequence. All defects, except for those near
the free lateral boundary, end up growing to comparable sizes. As the thickness of the rubber disk is
increased, a similar cascading sequence occurs, but its propagation remains localized around the center
of the disk. As the thickness of the rubber disk is increased even further, midplane defects do not grow
at all. Instead, those near the rubber/plates interfaces do grow, but at such a slow rate that they remain
largely inconsequential.

3.3 Elastic cavitation theory vs. experiments

We are now in a position to confront the foregoing theoretical results to the experimental observations and
measurements of Gent and Lindley (1959). Figure 13 reproduces photographs of the midplane of three test-
pieces, made up of the same natural rubber but different disk thicknesses H = 0.061, 0.180, and 0.370 cm,
cut open after being subjected to a macroscopic stress of σ = 2.74 MPa; the shear modulus of the rubber
is µ = 0.59 MPa (labeled as vulcanizate D in Gent and Lindley, 1959). A key observation from this figure
is that, irrespectively of the thickness of the rubber disk, cavities appear in the midplane of the disk and
not elsewhere. Remarkably, this is in agreement with the simulations, even though the simulations assume
that the rubber is Gaussian and that the defects can only grow elastically. This, of course, is not the case
in the experiments. Indeed, the natural rubber utilized in the experiments is comprised of polymeric chains
of finite length and thus its behavior is not Gaussian beyond moderately large deformations (typically in
the order of 300%). Moreover, as plainly shown by the post-mortem snapshots in Fig. 13, the defects do
grow inelastically by the irreversible creation of new surface.

Fig. 13 Midplane of poker-chip test-pieces, made up of the same natural rubber with initial shear modulus µ = 0.59 MPa,
cut open after being subjected to a macroscopic stress of σ = 2.74 MPa. Parts (a), (b), and (c) correspond, respectively, to
rubber disks with initial thicknesses H = 0.061, 0.180, and 0.370 cm, as reported by Gent and Lindley (1959).

Another key observation from Fig. 13 is that for the thin disk with H = 0.061 cm, cavities appear
pervasively over the entire midplane, with the exception of a narrow region around the lateral free bound-
ary. For the moderately thick disk with H = 0.180 cm, on the other hand, the formed cavities remain
localized around the center of the disk. Finally, for the thicker disk with H = 0.370 cm, only a single cavity
appears in the center of the disk. Yet again, this behavior of localization towards the center of the disk
with increasing rubber disk thickness is in agreement with the simulations. In spite of this agreement in
location, the shape of the cavities in the experiments with disk thicknesses H = 0.180 cm and H = 0.370
cm are extremely anisotropic, which is not the case for the shapes of the cavities in the simulations. This is
another manifestation of the fact that defects in actual rubber do grow inelastically via a fracture process.
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While Gent and Lindley (1959) did not monitor the growth of the defects in-situ (other than in one
of their specimens made up of transparent rubber, vulcanizate G), more recent poker-chip experiments
have made used of X-ray computer tomography to access such information (Bayraktar et al., 2008).
These experiments have shown that the cavities appear first in the center of the disk and subsequently
downstream in the direction of the lateral boundary. This radial cascading sequence is also in agreement
with the simulations.

In addition to post-mortem photographs of the test-pieces, Gent and Lindley reported various quanti-
tative measurements as well. Figure 14(a) shows the macroscopic stress-strain relation for the poker-chip
test-piece wherein the rubber has shear modulus µ = 0.59 MPa and the thickness of the rubber disk is
H = 0.190 cm. The dash line corresponds to the experiment, while the solid blue line corresponds to
the simulation with 195 defects; the simulation for the perfect rubber disk without defects (solid orange
line) is also plotted to aid the discussion. There is a clear disagreement between the experiment and the
simulations. The disagreement occurs from the very beginning of the loading, prior to the occurrence of
cavitation, when the local deformation within the rubber is small and thus its behavior can indeed be
accurately modeled as Gaussian. This suggests that there might be some inconsistencies in the experi-
mental measurements of the macroscopic strain, since the macroscopic stress is less likely to be inaccurate
because the corresponding forces involved are fairly large, in the order of hundreds of newtons. This latter
point is further supported by the fact that the critical macroscopic stress at which cavitation ensues in
the simulation, σcr ≈ 0.8 MPa, is similar in value to that in the experiment, σcr ≈ 1.1 MPa. The same is
not true for the values of the critical macroscopic strain. Another point of discrepancy distinctly shown by
Fig. 14(a) is that the softening of the experimental stress-strain response appears significantly more pro-
nounced than that of the simulation. While this is to be expected since material softening due to fracture
— in addition to geometrical softening due to the growth of the defects — is present in the experiment
but not in the simulation, experiments with more accurate measurements of the macroscopic strain and
stress would be needed to corroborate this difference.
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Fig. 14 (a) Comparison of the experimental (dash line) and theoretical (solid lines) macroscopic stress-strain relation for the
poker-chip test-piece with rubber disk thickness H = 0.190 cm. (b) Comparison of the experimental (circles) and theoretical
(solid line) critical macroscopic stress, σcr, at which cavitation ensues, plotted as a function of the thickness H of the rubber
disk. All of the results in parts (a) and (b) pertain to natural rubber with initial shear modulus µ = 0.59 MPa, labeled as
vulcanizate D in Gent and Lindley (1959).

To close, Fig. 14(b) shows plots of the the critical macroscopic stress, σcr, at which cavitation ensues in
terms of the thickness H of the rubber disk also for the case of natural rubber with initial shear modulus
µ = 0.59 MPa. More precisely, the circles correspond to the values of the stress at which the stress-strain
relation reaches its first local maximum in the experiments, presumably as a consequence of the finite
growth of the underlying defects (Gent and Lindley, 1959). The solid line corresponds to the values of
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the stress at which satisfaction of the general cavitation criterion (9) reaches the center of the rubber
disk in the simulations; these values essentially indicate the point at which the macroscopic stress-strain
relation starts to soften (because of the finite growth of the defects). To certain extent, the theoretical
results predicted by the simulations are quantitatively similar to the experimental measurements (in the
order of 1 MPa). Qualitatively, on the other hand, they are rather different. For test-pieces with rubber
disk thickness in the range H ∈ [0.056 cm, 0.25 cm], the critical stress at which cavitation ensues in the
experiments decreases with increasing thickness. For test-pieces with H ∈ [0.25 cm, 0.5 cm], the critical
stress remains constant. And for those withH > 0.5 cm, cavitation does not occur. By contrast, the critical
stress predicted by the simulations monotonically increases with increasing rubber disk thickness up to
approximately H = 0.6 cm, beyond which cavitation does not occur. We note that the above-discussed
qualitative difference between the experiments and the theory may be due in part to the fact that cavitation
in experiments occurs well before the stress-strain relation reaches a local maximum. Experiments with a
more direct detection of the onset of cavitation should be able to clarify this issue.

4 Comparison of the theory with the experiments of Gent and Park (1984)

Along the lines of the earlier work of Oberth and Bruenner (1965), Gent and Park (1984) studied the
occurrence of cavitation near reinforcing particles in filled rubber via some ingenious experiments. They
fabricated specimens comprised of a block of transparent rubber filled with two2 small spherical particles
placed in close proximity. They then subjected the entire block to quasistatic uniaxial tension in the
direction of the alignment of the particles and monitored visually — through the transparent rubber —
the occurrence of cavitation near the particles. The rubber utilized in the experiments was silicone rubber
with an initial shear modulus of about 1 MPa. The spherical particles were comparatively rigid soda-lime
glass beads of radius R = 0.625 mm. In order to obtain a good adhesion between the glass and the rubber,
the surfaces of the beads were treated with a primer. Two cases with slightly different initial distances
between the particles, denoted here as D, were reported. The values of these distances were not explicitly
stated in their paper, but from the photographs provided they can be estimated as D = 0.145 and 0.190
mm. Figure 15 shows a schematic of the geometry and deformation of the specimens with the various
quantities of interest.

glass beads

silicone rubber

Fig. 15 Schematic of the experimental setup of Gent and Park (1984). Two spherical glass beads of radius R = 0.625 mm
were embedded in close proximity at an initial distance D within the interior of a much larger block, with initial length H,
of transparent rubber. The block was then subjected to uniaxial tension in the direction of the alignment of the particles.
The macroscopic strain measure in the direction of the applied tensile load was defined as ε

.
= h/H − 1.

2 Gent and Park (1984) also studied specimens containing a single spherical filler particle. This simpler case is not con-
sidered here.
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In this section, similar to the previous analysis of the poker-chip experiments, we report FE simulations
of the experiments of Gent and Park (1984). We begin in subsection 4.1 by showing when and where the
cavitation criterion (9) is satisfied for the two test-pieces with distances D = 0.145 and 0.190 mm between
the particles, as a function of the macroscopic strain ε. In subsection 4.2, we explicitly introduce defects
— in the form of vacuous spherical cavities of ∆ = 0.2 µm radius — at the locations disclosed by the
criterion into the FE models in order to examine how the “nucleated” cavities grow and interact upon
further loading. We compare the simulations directly to the experiments in subsection 4.3.

4.1 Pointwise monitoring of the cavitation criterion

The FE model. For convenience and without loss of generality, the particles are considered to be located
along the center of a circular cylindrical block with initial length H = 160×R = 100 mm and initial radius
H/2 = 50 mm; this size is sufficiently large for the filler particles not to interact with the outer boundaries
of the block. Since the shear modulus of soda-lime glass is in the order of 20 GPa, the particles are modeled
as nonlinear elastic solids with the same form of stored-energy function (7) as the silicone rubber, but
with a shear modulus four orders of magnitude larger. They are further assumed to be perfectly bonded
to the rubber. The inherent geometric and constitutive symmetries of the problem allow to perform the
calculations in just one half of a 2D-axisymmetric configuration of the test-piece of interest. The geometry
of such regions is discretized with four-node hybrid linear elements with constant pressure (CAX4H in
ABAQUS) in a way that smaller elements are placed around the particles. Figure 16 illustrates the mesh
utilized for the case with particle distance D = 0.145 mm. It contains a total of about 30,000 elements,
which proves refined enough to generate accurate results.

Fig. 16 Axisymmetric FE model for the Gent-Park test-piece with two filler particles separated by a distance D = 0.145
mm.

Results. Figure 17 shows the deformed configurations of the region in between the particles of the simulated
Gent-Park experiment with particle distance D = 0.145 mm at five different values of the macroscopic
strain, ε = 0, 7.15, 9.10, 11.00, and 20.00%. Material points at which the cavitation criterion (9) is satisfied
are depicted in red; the points at which the hydrostatic criterion (10) is satisfied are also depicted to aid
the discussion. The first points to reach the cavitation criterion are those located at the rubber/particles
interfaces on the inner poles of the particles. The state of stress at those locations is almost purely
hydrostatic, as can be deduced from the agreement between the predictions of the general and hydrostatic
criteria shown by Fig. 17(b). At those locations, the value of hydrostatic stress is also the largest within
the rubber. As the macroscopic strain increases, the satisfaction of the criterion propagates along the
rubber/particles interfaces and also to the midpoint between the particles reaching it at the value ε =
11.00%; this is shown by Fig. 17(d). As the macroscopic strain increases even further, Fig. 17(e) shows
that the region where the criterion is satisfied continues to grow radially outwards. In spite of the close
distance between the particles, it is plain by glancing at the results based on the general and hydrostatic
criteria that the effect of shear stresses is substantial.
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Hydrostatic

criterion

Fig. 17 Axisymmetric FE simulation of the Gent-Park experiment with distance D = 0.145 mm between the particles.
Parts (a) through (e) show the deformed configurations of the region between the particles at five values of the macroscopic
strain ε. The material points at which the general criterion (9) and the hydrostatic criterion (10) — included for comparison
purposes — are progressively satisfied are depicted in red.

Figure 18 shows corresponding simulations of the Gent-Park experiment with the slightly larger particle
distanceD = 0.190 mm. The qualitative behavior, in the sense of when and where cavitation occurs, is seen
to be essentially the same as that shown by Fig. 17. Quantitatively, however, the results are significantly
different. Indeed, Fig. 18(b) shows that the onset of cavitation at the rubber/particles interfaces occurs
at the sizably larger macroscopic strain ε = 9.60% (compared to ε = 7.15%). Moreover, Fig. 18(d) shows
that the onset of cavitation at the midpoint between the particles occurs also at the much larger value
ε = 20% (compared to ε = 11.00%). These results hence reveal that the state of stress between two nearby
filler particles is extremely sensitive to the initial distance between them. In particular, small decreases
in initial distance (e.g., here, 0.045 mm for particles of radius R = 0.625 mm) can result in significantly
higher stress triaxialities, and thus an earlier onset of cavitation.

General

criterion

Hydrostatic

criterion

Fig. 18 Axisymmetric FE simulation of the Gent-Park experiment with distance D = 0.190 mm between the particles.
Parts (a) through (e) show the deformed configurations of the region between the particles at five values of the macroscopic
strain ε. The material points at which the general criterion (9) and the hydrostatic criterion (10) — included for comparison
purposes — are progressively satisfied are depicted in red.

4.2 Full-field simulations accounting for the growth of the defects

Having determined the critical macroscopic loads and associated spatial locations at which defects in
rubber may start to grow to finite sizes during Gent-Park experiments, we now turn to investigate the
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extent to which they grow and how they interact with one another. To this end, again, we introduce defects
explicitly in the FE models at the locations disclosed by the criterion (9) and monitor their growth. Here,
much like in the analysis of the poker-chip experiments, defects are modeled as vacuous spherical cavities
of initial radius ∆ = 0.2 µm; a variety of smaller defects of spherical and non-spherical shapes have been
checked to lead essentially to the same results. Since the attainability of the cavitation criterion occurs
first at the rubber/particles interfaces on the inner poles of the particles and then at the midpoint between
the particles, we consider the explicit presence of defects sequentially at those locations.

The FE model. Introducing spherical defects at the poles of the particles and the midpoint between them
does not perturb the geometric symmetry of the problem. Consequently, the relevant calculations can still
be carried out over just one half of a 2D-axisymmetric configuration of the test-piece under investigation.
Similar to the preceding analysis, four-node hybrid linear elements are utilized to discretize such regions
with smaller elements placed around the defects. For illustration purposes, Fig. 19 depicts details of the
mesh utilized for the case when three defects are introduced at the particle inner poles and midpoint
between them for the test-piece with particle distance D = 0.145 mm. Figure 19(a) depicts the mesh near
the defect at the inner pole of the top particle, while Fig. 19(b) depicts the mesh near the defect at the
midpoint between the particles. Note that the defects at the poles are positioned 0.1 µm away from the
rubber/particles interfaces in order to be able to mesh them appropriately. In all, the mesh contains a
total of about 35,000 elements.

Fig. 19 Details of the axisymmetric FE model for the Gent-Park test-piece with particle distance D = 0.145 mm containing
three defects: two at the inner poles of the particles and one at the midpoint between the particles. Part (a) shows the
defect at the interface between the rubber and the top particle, while part (b) shows the defect at the midpoint between the
particles.

Results. Figure 20 shows simulations of the Gent-Park experiment with particle distance D = 0.145 mm
containing two and three defects. Parts (a)–(d) and (i) correspond to results for the case when two defects
are located at the rubber/particles interfaces, whereas parts (e)–(h) and (j) correspond to the case when
there is an additional third defect located at the midpoint between the particles. In particular, Figs.
20(a)–(h) illustrate the deformed configurations of the region in between the particles at various values
of the macroscopic strain ε; the ratios vi/V and vm/V of current volumes vi and vm to initial volume
V = 4/3π∆3 ≈ 3.35× 10−20 m3 of the defects at the interfaces and midpoint are also displayed in these
figures. Figs. 20(g) and (h) present corresponding plots of the volume variation of the defects as a function
of ε.

When the only defects that are accounted for are those at the rubber/particles interfaces on the inner
poles of the particles, it is readily deduced pictorially from Figs. 20(a)–(d) and quantitatively from Fig.
20(i) that such defects start to grow suddenly to much larger sizes at around the critical strain ε = 7%
predicted by the criterion (9). They continue to grow upon further loading. By contrast, when an additional
defect is also accounted for at the midpoint between the particles, Figs. 20(e)–(h) and (j) show a markedly
different behavior. The sudden growth of the interfacial defects still ensues at around the critical strain
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Fig. 20 Axisymmetric FE simulations of the Gent-Park experiment with particle distance D = 0.145 mm containing two
and three defects. Parts (a) through (d) and (i) show results when two defects are located at the rubber/particles interfaces
on the inner poles of the particles. On the other hand, parts (e) through (h) and (j) show results when there is an additional
third defect located at the midpoint between the particles. Figures (a)–(h) depict the deformed configurations of the region
in between the particles at four values of the applied macroscopic strain ε, while (i) and (j) show plots of the volume variation
v/V of the defects as a function of ε.

ε = 7%. However, consistent with the prediction from the criterion (9), the midpoint defect starts to
rapidly grow at around the macroscopic strain ε = 11% and beyond in unison with a deceleration of the
growth of the interfacial defects. These results are consistent with the fact that the growth of defects
near the stiff rubber/particles interfaces is energetically more costly than at the midpoint between the
particles, where it is in fact least costly. Accordingly, it is the defect at the midpoint the one that ends up
accommodating the larger part of the growth.

The simulations of the Gent-Park experiment with the larger particle distance D = 0.190 mm con-
taining analogous two and three defects are qualitatively the same as those shown by Fig. 20. The sole
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difference is that the values of macroscopic strain at which the defects at the interfaces and subsequently
at the midpoint grow are larger. For conciseness, no additional results for this case are thus included here.

In summary, the foregoing results reveal that the defects near the rubber/particles interfaces on the
inner poles of the particles are the first to finitely grow during Gent-Park experiments. This is because,
much like in the poker-chip results, the extreme mismatch in stiffness between the rubber and the filler
particles leads to very large hydrostatic stresses on the inner poles of the particles and hence the cavitation
criterion (9) is satisfied there first. As the loading progresses, the finite growth of a defect near the
midpoint between the particles ensues at the expense of the interfacial defects whose growth comparatively
stops. Again, much like in the poker-chip results, this is because the midpoint is farthest from the stiff
rubber/particles interfaces and thus it is the location where the growth of defects is energetically least
costly. As the loading progresses even further, the midpoint defect continues to accommodate most of
the growth in detriment of the “nucleation” of more defects. Interestingly, this is in agreement with the
behavior of defects in poker-chip test-pieces with thick rubber disks but in disagreement with that found in
poker-chip test-pieces with thin rubber disks. The reason behind this disagreement is simply that defects
in Gent-Park experiments are constrained to grow within the gap between two spheres instead of within
the much more confined gap between two planes. The strong confinement in poker-chip test-pieces with
thin rubber disks penalizes the localization of growth in a single defect and favors instead the growth of
multiple defects.

4.3 Elastic cavitation theory vs. experiments

At this stage, we are equipped to compare the above theoretical results directly with the experiments
of Gent and Park (1984). Figure 21 reproduces photographs of the Gent-Park experiment with particle
distance D = 0.145 mm at three values of macroscopic strain, ε = 0, 17 and 20%, and also after unloading.
Figure 21(b) shows that cavities first appear near the inner poles of the particles at or before (their
paper contains no evidence or statements as to when precisely the cavities first appear) the macroscopic
strain ε = 17%. At the larger macroscopic strain ε = 20%, Fig. 21(c) shows that the cavities near the
rubber/particles interfaces recede and a large cavity appears at the midpoint between the particles instead.
Both of these events are in qualitative agreement with the simulations. Such an agreement is admittedly
remarkable since, again, in addition to assuming that the rubber is Gaussian the simulations also assume
that the defects can only grow elastically. Neither of these assumptions is in accord with the actual silicone
rubber utilized in the experiment. For instance, Fig. 21(d) clearly shows that at least the midpoint defect
in the experiment does grow inelastically via a fracture process.

Fig. 21 In-situ photographs of the Gent-Park experiment with initial distance D = 0.145 mm between the particles, of
radius R = 0.625 mm, at macroscopic strains: (a) ε = 0, (b) ε = 17%, and (c) ε = 20%. Part (d) shows a photograph of the
specimen after unloading (Gent and Park, 1984).

In spite of the qualitative agreement pointed out above, there is a distinct quantitative discrepancy
between the experiment shown in Fig. 21 and the corresponding simulation shown in Fig. 20. In the
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simulation, cavities first appear near the inner poles of the particles at the macroscopic strain ε = 7%. At
the larger macroscopic strain ε = 17%, the cavity at the midpoint has already enlarged to accommodate
most of the total growth of all three defects. While Fig. 21 does not provide a conclusive macroscopic strain
at which the cavities near the inner poles of the particles first appear in the experiment, it does show
that the cavity at the midpoint appears only after the macroscopic strain ε = 17%. To better quantify
this discrepancy, however, Gent-Park experiments with a continuous and more accurate spatiotemporal
monitoring of the region between the particles would be needed.

Another important point of disagreement between the experiment shown in Fig. 21 and the correspond-
ing simulation shown in Fig. 20 is the shape of the deformed cavity at the midpoint. In the simulation,
the midpoint cavity exhibits a prolate shape aligned with the applied tensile force. In the experiment, on
the other hand, the midpoint cavity exhibits an oblate shape aligned in the transverse direction to the
applied tensile force. This is a clear manifestation that the midpoint defect in the experiment does grow
inelastically by a fracture process, and not just elastically as assumed in the simulation.

5 Concluding remarks

The comparisons presented in Sections 3 and 4 have shown that theoretical results based on the premise
that rubber is Gaussian and the further assumption that its inherent defects are vacuous and isotropically
distributed are in good qualitative agreement with experiments in the sense of: (i) when and where
cavitation first occurs as well as (ii) how cavities continue to grow and interact once they have been
“nucleated”. This remarkable agreement suggests that the sudden growth of defects and their ensuing
behavior and interaction with other defects in real rubber is driven predominantly by the minimization
of the elastic energy of the rubber. A direct practical implication of such a prominence of the elastic
properties is that the elastic criterion (9) can be utilized effectively to gain quick insight into the possible
occurrence of cavitation in real material systems comprising rubber.

The comparisons have further made it plain that the quantitative agreement between the theoretical
results and the experiments is, as expected, poor. This is because the stiffening of rubber at large defor-
mations (i.e., its departure from Gaussian behavior) and, more importantly, the fact that rubber ruptures
at large but finite deformations (thus ceasing to be an elastic solid) are two features that need to be ac-
counted for in the theoretical description of cavitation. While the microscopic mechanisms responsible for
fracture in rubber are still unknown (in particular, it is yet unclear whether rubber fractures via changes
in the conformation of the underlying polymeric chains or via the breaking of atomic bonds), it is expected
that the rubber surrounding the defects at which cavitation occurs possess different mechanical properties
than the rubber in the bulk. Accounting for the geometry and mechanical properties of such “damaged”
regions of rubber in the theoretical description of cavitation appears also to be of the essence. In this
context, it would be interesting to extend the elastic theory of Lopez-Pamies et al. (2011a) to account for
all of the above-described three effects. The works of Williams and Schapery (1965) and Gent and Wang
(1991) based on the ideas of Griffith (1921) may prove relevant in pursuing such an extension.

The results presented in Sections 3 and 4 have also revealed that there remains a need for more
comprehensive and accurate sets of experimental data to advance the understating of the phenomenon of
cavitation in rubber.
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