Abaqus/CFD – Sample Problems

Abaqus 6.10

Contents

- 1. Oscillatory Laminar Plane Poiseuille Flow
- 2. Flow in Shear Driven Cavities
- 3. Buoyancy Driven Flow in Cavities
- 4. Turbulent Flow in a Rectangular Channel
- 5. Von Karman Vortex Street Behind a Circular Cylinder
- 6. Flow Over a Backward Facing Step

This document provides a set of sample problems that can be used as a starting point to perform rigorous verification and validation studies. The associated Python scripts that can be used to create the Abaqus/CAE database and associated input files are provided.

1. Oscillatory Laminar Plane Poiseuille Flow

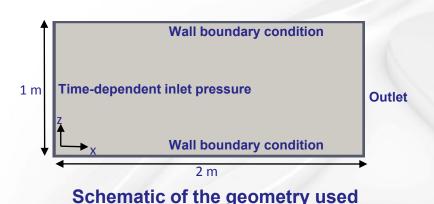
Oscillatory Laminar Plane Poiseuille Flow

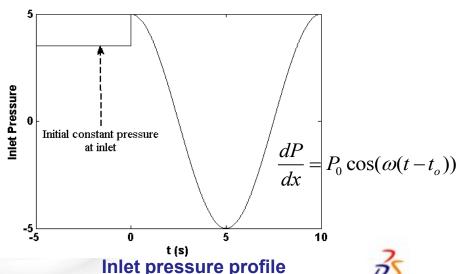
Overview

 This example compares the prediction of the time-dependent velocity profile in a channel subjected to an oscillatory pressure gradient to the analytical solution.

Problem description

• A rectangular 2-dimensional channel of width = 1m and length = 2m is considered. An oscillatory pressure gradient (with zero mean) is imposed at the inlet. The analysis is carried out in two steps. In the first analysis step, a constant pressure gradient is prescribed for the first 5 seconds of the simulation to initialize the velocity field to match that of the analytical steady-state solution. In the second analysis step, the flow is subjected to an oscillatory pressure gradient. A 40x20 uniform mesh is used for this problem. Two dimensional geometry is modeled as three dimensional means a second in this problem.





Oscillatory Laminar Plane Poiseuille Flow

Features

- Laminar flow
- Time-dependent pressure inlet
- Multi-step analysis

Boundary conditions

- Pressure inlet
 - $t < t_0$: p = 7.024
 - $t > t_0$: $p = 10*Cos(\omega(t-t_0))$; $t_0 = 5$, $\omega = \pi/5$
- Pressure outlet (p = 0)
- No-slip wall boundary condition on top and bottom (V = 0)

Analytical solution

$$\frac{dP}{dx} = -P_0 e^{i\omega t}$$

$$u(y,t) = \text{Re}\left(\frac{P_o \ell_s^2}{2iv} e^{i\omega t} \left[1 - \frac{\cos(\kappa z - \kappa h)}{\cos(\kappa h)}\right]\right)$$

$$\kappa = \sqrt{\frac{-i\omega}{v}} \qquad \ell_s = \sqrt{\frac{2v}{\omega}}$$

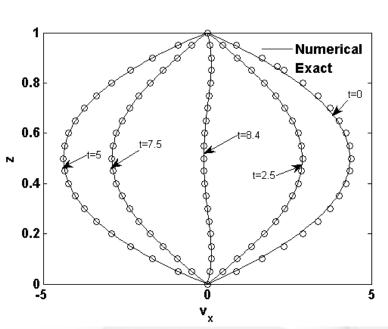
- h is the half-channel width
- P_o is the amplitude of pressure gradient oscillation
 - $\boldsymbol{\omega}$ is the circular frequency

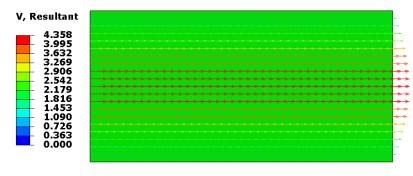
References

 Fluid Mechanics, Second Edition: Volume 6 (Course of Theoretical Physics), Authors: L. D. Landau, E.M. Lifshitz

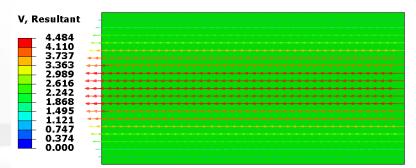
Oscillatory Laminar Plane Poiseuille Flow

Results





T= 5 sec



Velocity profile: Comparison with analytical solution

T= 10 sec

Files

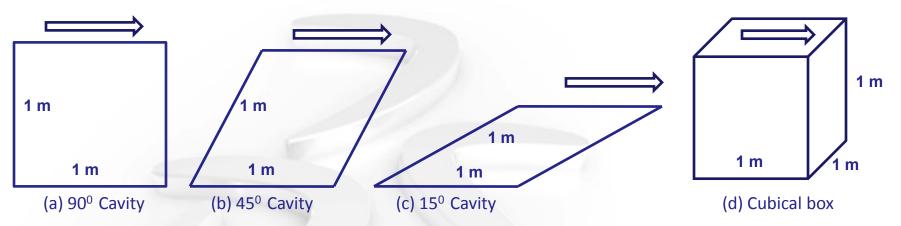
- ex1_oscillatory_planeflow.py
 - ex1_oscillatory_planeflow_mesh.inp

Overview

• This sample problem compares the prediction of velocity profiles in shear-driven cavities of different shapes. 2-dimensional 90°, 45° and 15° cavities are considered. Shear driven flow in a cubical box is also presented. Velocity profiles in each of these cases are compared against numerical results available in literature.

Problem description

The following cavity configurations and Reynolds' numbers are presented



- 90° Cavity: Reynolds number = 100, 3200; Mesh: 129x129x1
- 45° Cavity: Reynolds number = 100; Mesh: 512x512x1
- 15⁰ Cavity: Reynolds number = 100; Mesh: 256x256x1
- Cubical box: Reynolds number = 400; Mesh: 32x32x32

Features

Laminar shear driven flow

Boundary conditions

- Specified velocity at top plane to match flow Reynolds' number
- No-slip at all other planes (V = 0)
- Hydrostatic mode is eliminated by setting reference pressure to zero at a single node

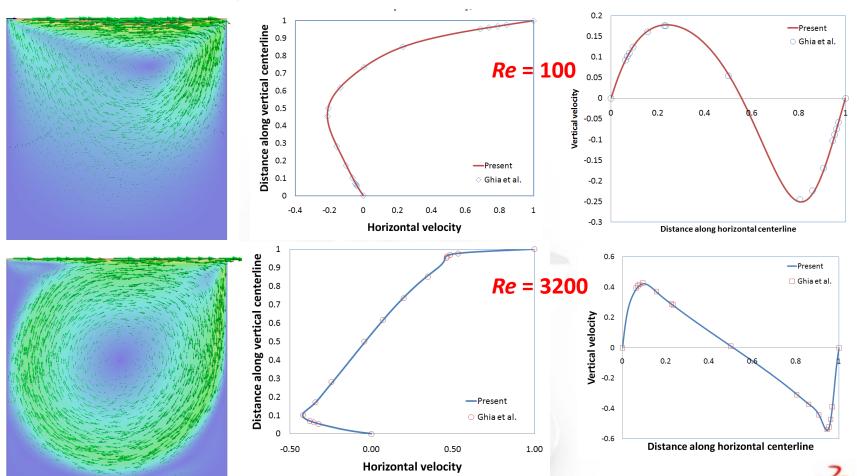
References

- "High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method" U. Ghia, K. N. Ghia, and C. T. Shin Journal of Computational Physics 48, 387-411 (1982)
- 2. "Numerical solutions of 2-D steady incompressible flow in a driven skewed cavity" Ercan Erturk* and Bahtiyar Dursun ZAMM · Z. Angew. Math. Mech. 87, No. 5, 377 392 (2007)
- 3. "Flow topology in a steady three-dimensional lid-driven cavity" T.W.H. Sheu, S.F. Tsai, Computers & Fluids, 31, 911–934 (2002)

90° Cavity

Results

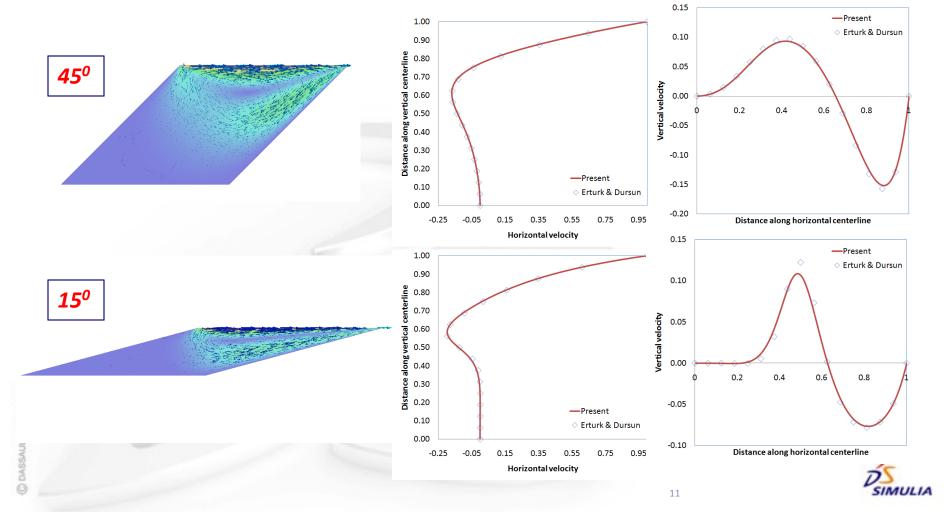
Velocities along horizontal and vertical centerlines



Skew Cavity (45° and 15°)

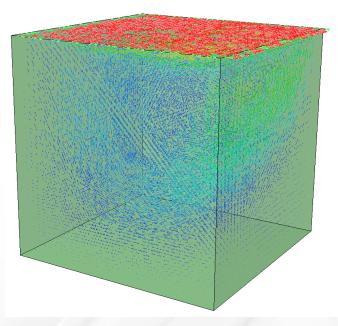
Results

Velocities along horizontal and vertical centerlines

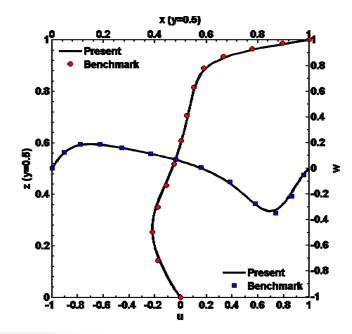


Cubical Box

Results



Velocity vectors



Velocities along horizontal and vertical centerlines

Files

- ex2_sheardriven_cavity.py
 - ex2_cavity15deg_mesh.inp
 - ex2_cavity45deg_mesh.inp
 - ex2_cubicalbox_mesh.inp
 - ex2_sqcavity_mesh.inp

Overview

 This sample problem compares the prediction of velocity profiles due to buoyancy driven flow in square and cubical cavities. The cavities are differentially heated to obtain a temperature gradient. Velocity profiles in each of these cases are compared against numerical results available in the literature.

Problem description

• The material properties are chosen to match the desired Rayleigh number, Ra

$$Ra = \frac{g\beta L^3 \Delta T}{\upsilon \alpha}$$

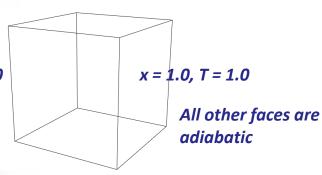
 ν , Kinematic viscosity

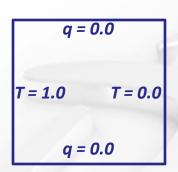
 α , Thermal diffusivity

 β , Thermal expansion coefficient

g, Acceleration due to gravity

$$x = 0, T = 1.0$$





- Square Cavity: Rayleigh number = 1e3, 1e6
- Cubical Cavity: Rayleigh number = 1e4

Features

- Buoyancy driven flow
- Boussinesq body forces

Boundary conditions

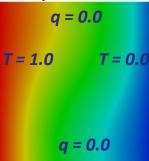
- No-slip velocity boundary condition on all the planes (V = 0)
- Specified temperatures
- Hydrostatic mode is eliminated by setting reference pressure to zero at a single node

References

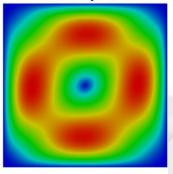
- "Natural Convection in a Square Cavity: A Comparison Exercise"
 G. de Vahl Davis and I. P. Jones
 International Journal for Numerical Methods in Fluids, 3, 227-248, (1983)
- 2. "Benchmark solutions for natural convection in a cubic cavity using the high-order time—space method" Shinichiro Wakashima, Takeo S. Saitoh International Journal of Heat and Mass Transfer, 47, 853–864, (2004)

2D Square Cavity

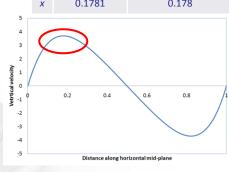
Results

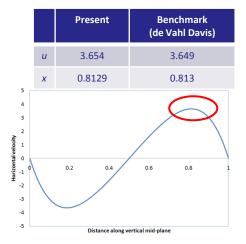


Velocity

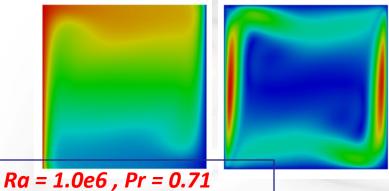


	Present	Benchmark (de Vahl Davis)
и	3.695	3.697
x	0.1781	0.178

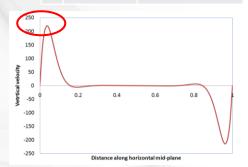




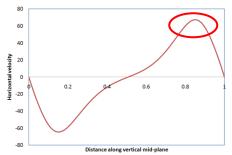
$$Ra = 1000, Pr = 0.71$$



Present		Benchmark (de Vahl Davis)	
и	219.747	219.36	
х	0.0375	0.0379	



	Present	Benchmark (de Vahl Davis)
и	65.9	64.63
х	0.85	0.85

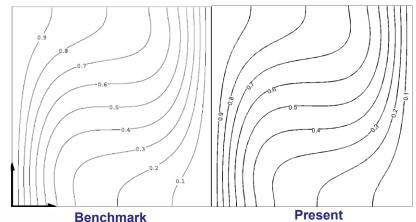


Cubical Box

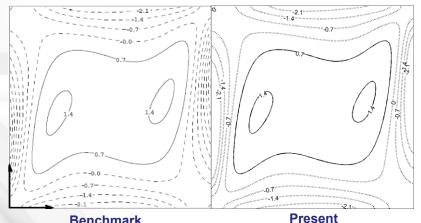
Results

$$Ra = 1.0e4, Pr = 0.71$$

	$\omega_2(0,0,0)$	$U_{1_{ m max}}(0.5, 0.5, z)$	$U_{3_{\text{max}}}(x,0.5,0.5)$
Benchmark (Wakashima & Saitoh (2004))	1.1018	0.1984 (z = 0.8250)	0.2216 (x = 0.1177)
Abaqus/CFD	1.1017	0.1986	0.2211
Error	-0.009%	0.1%	0.2%



Temperature contours at the mid plane (y=0.5)



Benchmark Present

Vorticity contours at the mid plane (y=0.5)

Files

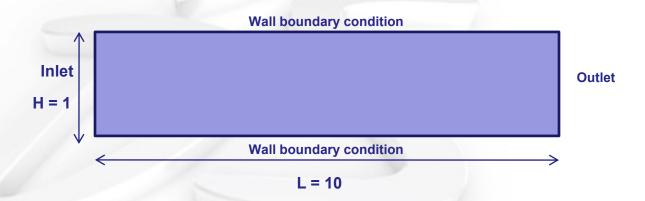
- ex3_buoyancydriven_flow.py
 - ex3_sqcavity_mesh.inp
 - ex3_cubicbox_mesh.inp

Overview

• This example models the turbulent flow in a rectangular channel at a friction Reynolds number = 180 and Reynolds number (based on mean velocity) = 5600. The one equation Spalart-Allmaras turbulence model is used. The results are compared with direct numerical simulation (DNS) results available in the literature as well as experimental results. Abaqus/CFD results at a friction Reynolds number = 395 and Reynolds number (based on mean velocity) = 13750 are also presented.

Problem description

A rectangular 2-dimensional channel of width = 1 unit and length = 10 units is considered. A
pressure gradient is imposed along the length of the channel by means of specified pressure
at the inlet and zero pressure at the outlet. The pressure gradient is chosen to impose the
desired friction Reynolds number for the flow.



Problem description (cont'd)

- The Reynolds number is defined as Re = $\rho U_{av}H/\mu$
- The friction Reynolds number is defined as $Re_{\tau} = \rho u_{\tau}(H/2)/\mu$, where u_{τ} is the friction velocity defined as

$$u_{\tau} = \sqrt{\frac{\tau_{w}}{\rho}}$$
 τ_{w} = wall shear stress

Features

- Turbulent flow
- Spalart-Allmaras turbulence model

Boundary conditions

- No-slip velocity boundary condition on channel walls(V = 0)
- Set through thickness velocity components to zero
- Distance function = 0, Kinematic turbulent viscosity = 0 at No-slip velocity boundary condition

Mesh

- Mesh 50 (Streamwise) X 91 (Normal) X 1 (Through thickness)
- y⁺ at first grid point ~ 0.046

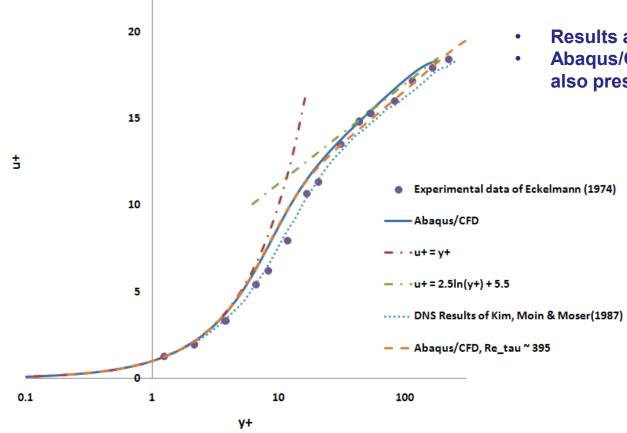
References

- 1. "Turbulence statistics in fully developed channel flow at low Reynolds number"
 - J. Kim, P. Moin and R. Moser
 - Journal of Fluid Mechanics, **177**, 133-166, (1987)
- 2. "The structure of the viscous sublayer and the adjacent wall region in a turbulent channel flow"
 - H. Eckelmann

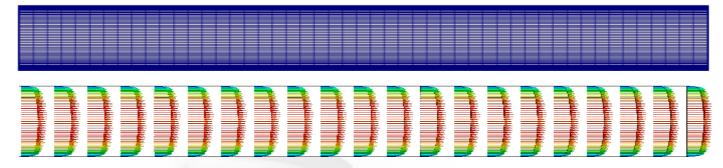
Journal of Fluid Mechanics, 65, 439, (1974)

Results

- Results are presented at $Re_{\tau} = 180$
- Abaqus/CFD results at $Re_{\tau} = 395$ is also presented



Results





DASSAULT SYSTEMES

Turbulent Flow in a Rectangular Channel

Files

- ex4_turb_channelflow.py
 - ex4_turb_channelflow_mesh.inp

Note

 Abaqus/CFD results at a friction Reynolds number ~ 395 and Reynolds number (based on mean velocity) ~ 13750 can be obtained by setting a pressure gradient of 0.0573

Von Karman Vortex Street Behind a Circular Cylinder

Overview

 This example simulates the Von Karman vortex street behind a circular cylinder at a flow Reynolds number of 100 based on the cylinder diameter. The frequency of the vortex shedding is compared with results available in the literature.

Problem description

• The computational domain for the vortex shedding calculations consists of an interior square region (-4 < x < 4; -4 < y < 4) surrounding a cylinder of unit diameter. The domain is extended in the wake of cylinder up to x = 20 units



Von Karman Vortex Street Behind a Circular Cylinder

Features

- Unsteady laminar flow
- Reynolds number = $\rho U_{inlet} D/\mu$

Fluid Properties

- Density = 1 unit
- Viscosity = 0.01 units

Boundary conditions

- Tow tank condition at top and bottom walls:
 - U = 1, V = 0
- Inlet velocity: U_{inlet} = 1, V = 0
- Set through thickness velocity components to zero
- Outlet: P = 0
- Cylinder surface: No-slip velocity boundary condition (V = 0)

Von Karman Vortex Street Behind a Circular Cylinder

References

Transient flow past a circular cylinder: a benchmark solution",
 M. S. Engelman and M. A. Jamnia
 International Journal for Numerical Methods in Fluids, 11, 985-1000, (1990)

C DASSAULT SYSTEMES

Von Karman Vortex Street Behind a Circular Cylinder

Results

	Total number of element	Strouhal Number*	Δt
Coarse	1760	0.1749	0.03
Fine	28160	0.1735	0.0075

* St = fD/U_{inlet} , f is the frequency of vortex shedding

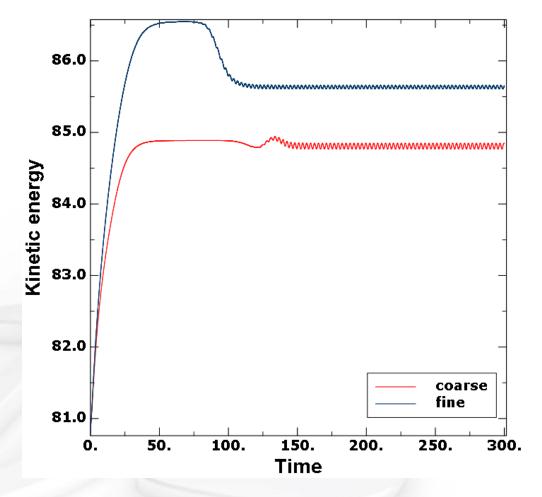
- The results are consistent with the Strouhal numbers reported in the reference (0.172-0.173)
- The frequency of the vortex shedding is obtained as the half of the peak frequency obtained by a FFT of kinetic energy plot (from t = 200 sec to 300 sec)

DASSAULT SYSTEME!

Von Karman Vortex Street Behind a Circular Cylinder

Results

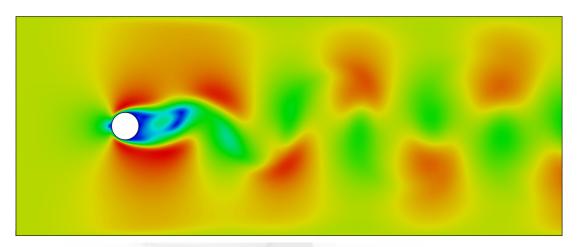
Kinetic energy



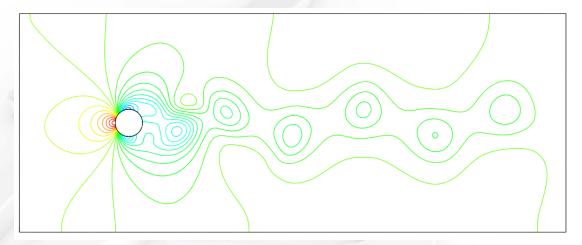
DASSAULT SYSTEMES

Von Karman Vortex Street Behind a Circular Cylinder

Results



Velocity contour plot at t = 300 sec



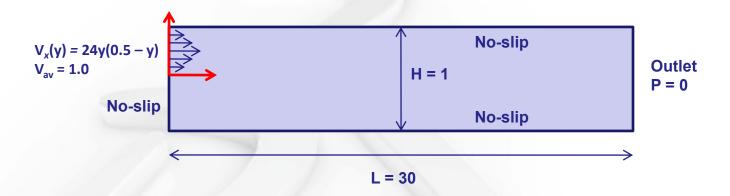
Pressure line plot at t = 300 sec

Overview

 This example simulates the laminar flow over a backward facing step at a Reynolds number of 800 based on channel height. The results are compared with numerical as well as experimental results available in literature.

Problem description

The computational domain for the flow calculations consists of an rectangular region (0 < x < 30; -0.5 < y < 0.5). The flow enters the solution domain from 0 < y < 0.5 while -0.5 < y < 0.0 represents the step. A parabolic velocity profile is specified at the inlet.



$$Re = \frac{\rho V_{av} H}{\mu}$$

Features

Steady laminar flow

Fluid Properties

- Density = 1 unit
- Viscosity = 0.00125 units (the viscosity is chosen so as to set the flow Reynolds number to 800)

Boundary conditions

- Set through thickness velocity components to zero
- No-slip velocity boundary condition at top and bottom walls

•
$$V_x = 0, V_y = 0$$

• Inlet velocity: Parabolic velocity profile - $V_x = f(y)$

$$V_y = 0$$

- Outlet: P = 0
- No-slip velocity boundary condition at the step boundary

•
$$V_x = 0, V_v = 0$$

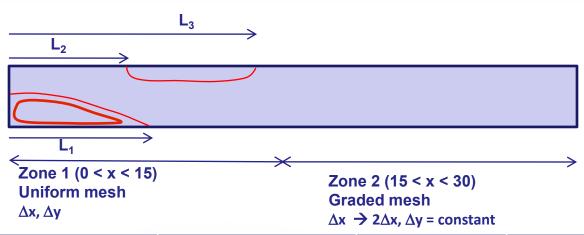
References

"A test problem for outflow boundary conditions – Flow over a backward-facing step"
 D. K. Gartling, International Journal for Numerical Methods in Fluids
 Vol 11, 953-967, (1990)

1 IOW

Results

Flow Over a Backward Facing Step

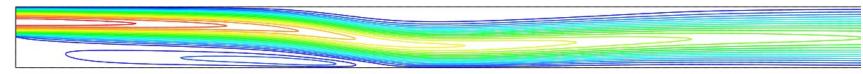


	Mesh (Across the channel x along the channel length)	L ₁ Length from the step face to the lower re-attachment point	L ₂ Length from the step face to upper separation point	L ₃ Length of the upper separation bubble
Gartling (1990)	40x800	6.1	4.85	10.48
Abaqus/CFD	Fine 80x1200x1 (Zone 1) 80x832x1 (Zone 2)	5.9919	4.9113	10.334
Abaqus/CFD	Medium 40x600x1 (Zone 1) 40x416x1 (Zone 2)	5.7471	4.8379	10.101
Abaqus/CFD	Coarse 20x300x1 (Zone 1) 20x208x1 (Zone 2)	4.5018	3.9659	8.7748

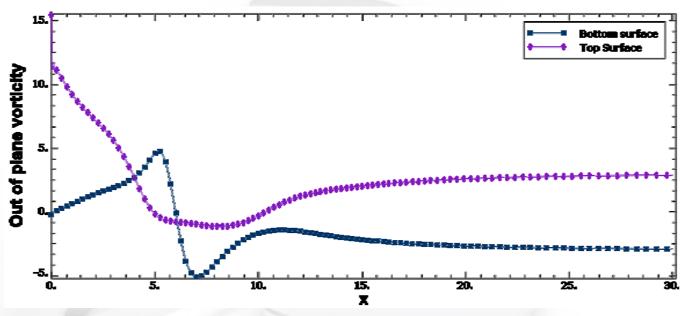
 Elements used by Gartling (1990) were biquadratic in velocity and linear discontinuous pressure elements. In contrast, the fluid elements in Abaqus/CFD use linear discontinuous in velocity and linear continuous in pressure.

Results

Pressure line plot (0 < x < 30)



Velocity line plot (0 < x < 15)



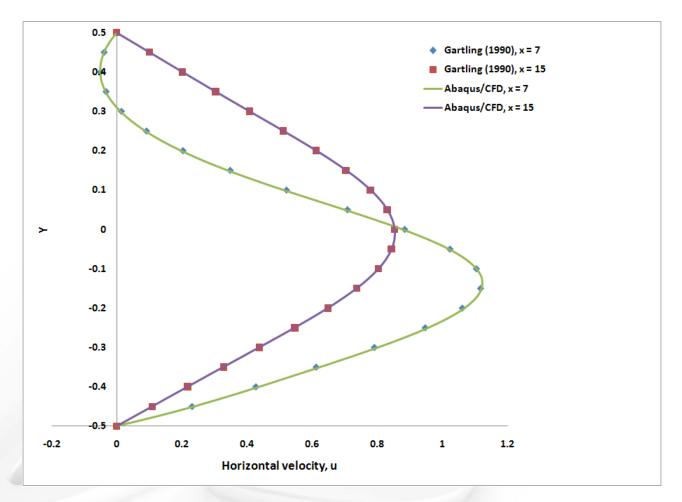
Out of plane vorticity (0 < x < 30)

DASSAULT SYSTEMES

Flow Over Backward Facing Step

Results

• Horizontal velocity at x = 7 & x = 15

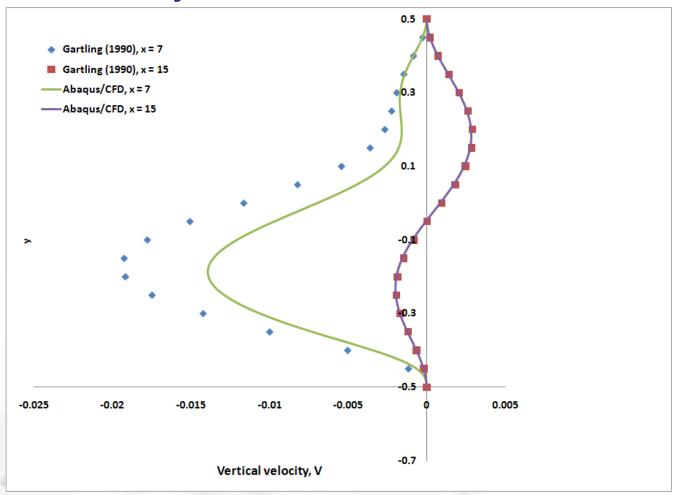


DASSAULT SYSTEME!

Flow Over Backward Facing Step

Results

• Vertical velocity at x = 7 & x = 15



DASSAULT SYSTEMES

Flow Over Backward Facing Step

Files

- ex6_backwardfacingstep.py
 - ex6_backwardfacingstep_coarse.inp
 - ex6_backwardfacingstep_medium.inp
 - ex6_backwardfacingstep_fine.inp
- coarse_parabolic_inlet_velocity.inp
- medium_parabolic_inlet_velocity.inp
- fine_parabolic_inlet_velocity.inp

Note

- The models require a parabolic velocity profile at the inlet. This needs to be manually included as boundary condition in the generated input file.
- The parabolic velocity profile required is provided in files coarse_parabolic_inlet_velocity.inp, medium_parabolic_inlet_velocity.inp and fine_parabolic_inlet_velocity.inp for coarse, medium and fine meshes, respectively.

