User login

Navigation

You are here

wvpaepeg's blog

Postdoc vacancy (3 years) on computational mechanics of thick adhesive joints in large wind turbine blades

Over the last years, UGent-MMS has developed the stand-alone BladeMesher software for generating finite element models of large wind turbine blades. The software reads in the material data and airfoil data of the wind turbine blade, and automatically constructs the geometry and finite element mesh for the blade. In a next step, the nodal and element information of the finite element mesh is written out to an input file for a commercial finite element solver (Abaqus in this case).

Postdoc vacancy (1.5 years) on topology optimization of electrical machines

Over the past years, UGent-MMS has developed a stand-alone topology optimization code for additive manufacturing applications. The topology optimization software can deal with thermo-mechanical coupled problems, combined with multi-material selection. Such features are not available in any commercial topology optimization code.
The code can also deal with large industrial optimization problems, with millions degrees of freedom in three-dimensional finite element models.

Postdoc vacancy (3 years) on computational mechanics of thick adhesive joints in large wind turbine blades

Over the last years, UGent-MMS has developed the stand-alone BladeMesher software for generating finite element models of large wind turbine blades. The software reads in the material data and airfoil data of the wind turbine blade, and automatically constructs the geometry and finite element mesh for the blade. In a next step, the nodal and element information of the finite element mesh is written out to an input file for a commercial finite element solver (Abaqus in this case).

Postdoc vacancy (3 years) on (Nonlinear) Resonant Ultrasound Spectroscopy technique for quality control of printed metal

Additive manufacturing of metal alloys yields great potential for the aerospace industry (and others) as it allows the generation of geometrically complex structures with high specific strength, low density and high corrosion resistance.

PhD vacancy (4 years) on computational mechanics of thick adhesive joints in large wind turbine blades

Over the last years, UGent-MMS has developed the stand-alone BladeMesher software for generating finite element models of large wind turbine blades. The software reads in the material data and airfoil data of the wind turbine blade, and automatically constructs the geometry and finite element mesh for the blade. In a next step, the nodal and element information of the finite element mesh is written out to an input file for a commercial finite element solver (Abaqus in this case).

PhD vacancy (4 years) on computational mechanics of thick adhesive joints in large wind turbine blades

Over the last years, UGent-MMS has developed the stand-alone BladeMesher software for generating finite element models of large wind turbine blades. The software reads in the material data and airfoil data of the wind turbine blade, and automatically constructs the geometry and finite element mesh for the blade. In a next step, the nodal and element information of the finite element mesh is written out to an input file for a commercial finite element solver (Abaqus in this case).

Postdoc vacancy (2.5 years) on multi-scale modelling of fatigue in 3D printed metals

The use of 3D printed metal structures is taking a very fast ramp-up in industry. General Electric has demonstrated the possibility of printing titanium fuel injectors for their LEAP engine, EADS has printed a nacelle hinge bracket for the Airbus A320, Boeing is printing plastic inlet ducts for high-altitude aircrafts, hip implants and other prosthetics are exploiting the design freedom of additive manufacturing (AM),...

Postdoc vacancy (2.5 years) on multi-scale modelling of fatigue in 3D printed metals

The use of 3D printed metal structures is taking a very fast ramp-up in industry. General Electric has demonstrated the possibility of printing titanium fuel injectors for their LEAP engine, EADS has printed a nacelle hinge bracket for the Airbus A320, Boeing is printing plastic inlet ducts for high-altitude aircrafts, hip implants and other prosthetics are exploiting the design freedom of additive manufacturing (AM),...

PhD/postdoc vacancy (4 years) on development of topology optimization algorithms for functionally graded materials

Wire Arc Additive Manufacturing or WAAM techniques are attracting interest from the manufacturing industry because of their potential to produce large metal components with low cost and short production lead time. This process exists alongside other high deposition rate metal AM technologies such as powder and wire based DED. While these use either laser or an electron beam as energy source to melt a metal powder or wire, WAAM technologies melt metal wire using an electric arc.

PhD vacancy (3 years) on mechanical testing of recyclable vitrimer composites

Vitrimers are a groundbreaking development in polymer chemistry. This new class of polymers is neither thermoset, nor thermoplastic, but inherits properties from both polymer classes. Vitrimers were "invented" by Prof. Leibler in Paris in 2011 (https://en.wikipedia.org/wiki/Vitrimers).

PhD/postdoc vacancy (4 years) on Ultrasonic assessment of the structural health of Lined Pipelines transporting heavy acids

Transportation of heavy acidic fluids is often done with specifically designed lined pipelines. The pipelines typically have an outer steel wall (thickness ~15 mm) and an inner ceramic coating (thickness ~1 mm). The proper functioning of such lined pipelines is almost exclusively determined by the inner ceramic coating. In case there would be a leak in the ceramic coating, the acidic fluid will corrode through the outer steel wall in a matter of hours, leading to a full shutdown of the industrial plant.

PhD vacancy (4 years) on topology optimization of large 3D printed structures with functionally graded materials

Arc welding based additive manufacturing or WAAM techniques are attracting interest from the manufacturing industry because of their potential to fabricate large metal components with low cost and short production lead time. This process exists alongside other high deposition rate metal AM technologies such as powder and wire based DED. While these use either laser or an electron beam as energy source to melt a metal powder or wire, WAAM technologies melt metal wire using an electric arc.

PhD/postdoc vacancy (4 years) on computational mechanics of large wind turbine blades

Over the last years, UGent-MMS has developed the stand-alone BladeMesher software for generating finite element models of large wind turbine blades. The software reads in the material data and airfoil data of the wind turbine blade, and automatically constructs the geometry and finite element mesh for the blade. In a next step, the nodal and element information of the finite element mesh is written out to an input file for a commercial finite element solver (Abaqus in this case).

PhD vacancy (3 years) on experimental testing of thermoplastic automotive composites

Thermoplastic composites are gaining more and more interest in automotive, aerospace and sports applications, because of the short cycle times and recycling possibilities. Besides short fibre-reinforced thermoplastics, also continuous fibre-reinforced thermoplastic composites are being considered for load-carrying structures. However, their behaviour during manufacturing and during in-service use is very different from the traditional thermoset composites (typically epoxy-based).

5 PhD/postdoc vacancies in mechanics of composites @ Ghent University (Belgium)

The Mechanics of Materials and Structures research group at Ghent University (Belgium) is recruiting 5 PhD/postdoc researchers in the field of experimental and computational mechanics of composites. There are 5 positions:

Postdoctoral vacancy (3 years) on patient-specific design and finite element modelling of 3D printed medical implants

3D printing or Additive Manufacturing (AM) technologies carry the promise of revolutionizing the quality and efficiency of healthcare. However, the required technologies, even when available, are currently too fragmented to be integrated into routine, affordable and streamlined solutions that can benefit a large number of patients. The challenge thereby is to deliver 3D printing technologies that enable:

3 PhD positions (4 years) on ultrasound inspection of layered materials

Ghent University (Belgium) has three open PhD positions of each 4 years on ultrasound inspection of layered materials, ranging from composites over coated pipelines to wood. More information can be found on http://www.composites.ugent.be/PhD_job_vacancies_PhD_job_positions_compo....

Postdoctoral vacancy (3 years) on automated software workflow for medical application of 3D printed technologies

3D printing or Additive Manufacturing (AM) technologies carry the promise of revolutionizing the quality and efficiency of healthcare. However, the required technologies, even when available, are currently too fragmented to be integrated into routine, affordable and streamlined solutions that can benefit a large number of patients. The challenge thereby is to deliver 3D printing technologies that enable:

Postdoctoral vacancy (2 years) on high-frequency vibration techniques for non-destructive inspection of 3D printed metal parts

The use of 3D printed metal structures is taking a very fast ramp-up in industry. General Electric has demonstrated the possibility of printing titanium fuel injectors for their LEAP engine, EADS has printed a nacelle hinge bracket for the Airbus A320, Boeing is printing plastic inlet ducts for high-altitude aircrafts, hip implants and other prosthetics are exploiting the design freedom of additive manufacturing (AM),..

Postdoctoral vacancy (3 years) on modelling interfacial debonding of short fibre-reinforced composites

This vacancy is part of a new European project RELICARIO on recycling of end-of-life carbon fiber reinforced plastics (CFRP). The consortium consists of 4 industrial partners, one SME, one research institute and Ghent University (our group UGent-MMS). 

Postdoctoral vacancy (3 years) on high-frequency vibration techniques for non-destructive inspection of 3D printed metal parts

The use of 3D printed metal structures is taking a very fast ramp-up in industry. General Electric has demonstrated the possibility of printing titanium fuel injectors for their LEAP engine, EADS has printed a nacelle hinge bracket for the Airbus A320, Boeing is printing plastic inlet ducts for high-altitude aircrafts, hip implants and other prosthetics are exploiting the design freedom of additive manufacturing (AM),...

Postdoctoral vacancy (2.5 years) on multi-axial fatigue modelling and testing for 3D printed metal parts

The use of 3D printed metal structures is taking a very fast ramp-up in industry. General Electric has demonstrated the possibility of printing titanium fuel injectors for their LEAP engine, EADS has printed a nacelle hinge bracket for the Airbus A320, Boeing is printing plastic inlet ducts for high-altitude aircrafts, hip implants and other prosthetics are exploiting the design freedom of additive manufacturing (AM),...

Postdoctoral vacancy (36 months) on automated software workflow for medical application of 3D printed technologies

3D printing or Additive Manufacturing (AM) technologies carry the promise of revolutionizing the quality and efficiency of healthcare. However, the required technologies, even when available, are currently too fragmented to be integrated into routine, affordable and streamlined solutions that can benefit a large number of patients. The challenge thereby is to deliver 3D printing technologies that enable:

Postdoctoral vacancy (36 months) on patient-specific design and finite element modelling of 3D printed medical implants

3D printing or Additive Manufacturing (AM) technologies carry the promise of revolutionizing the quality and efficiency of healthcare. However, the required technologies, even when available, are currently too fragmented to be integrated into routine, affordable and streamlined solutions that can benefit a large number of patients. The challenge thereby is to deliver 3D printing technologies that enable:

Pages

Subscribe to RSS - wvpaepeg's blog

Recent comments

More comments

Syndicate

Subscribe to Syndicate