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A first-principle computation of materials properties using quantum mechanics under the Born-

Oppenheimer approximation (Finnis, 2003) involves the estimation of the electronic wave-functions

by solving the time-independent Schrödinger’s equation. This is an eigenvalue problem given by

Hψi = εiψi , (1a)
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ψ = ψ(x1,x2, ...xN ) , (1c)

where H is the Hamiltonian of the system which is comprised of the kinetic energy of electrons and

electrostatic interaction energy between electrons and nuclei; ψi denote normalized, anti-symmetric

electronic wave-functions, i.e., eigenfunctions of the Hamiltonian; and εi denote the energy levels

or eigenvalues of the Hamiltonian. Here, xi = (ri, si), ri ∈ R3 denotes the spatial coordinates and

si the spin of the ith electron in the system; RI ∈ R3 represent the nuclear positions of the Ith

nuclei in the system with a charge of ZI ; and N and M denote the total number of electrons and

nuclei in the system.

Equation (1) suggests that the electronic wave-functions belong to a 3N dimensional space,

i.e, ψ ∈ R3N . This translates into a computational complexity that is so huge, that it makes the

computation of materials properties using quantum mechanics infeasible. To get an order of mag-

nitude estimate of this complexity, consider a material system with 100 electrons and consider a

discretization of the real line, R, with just 100 points. A first-principle calculation of this system,

which involves solving the eigenvalue problem given by equation (1), requires the computation of

eigenvalues and eigenfunctions of an astronomical 100300 × 100300 matrix. This problem is compu-

tationally intractable. In a landmark paper in 1929 (Dirac, 1929), Paul Dirac had remarked that

“The underlying physical laws necessary for the mathematical theory of a large part of physics and

the whole of chemistry are completely known, and the difficulty is only that the exact application

of these laws leads to equations much too complicated to be soluble. It therefore becomes desirable

that approximate practical methods of quantum mechanics should be developed, which can lead

to an explanation of the main features of the complex atomic systems without too much compu-

tation”. These various approximate methods developed over more than 5 decades constitute the

theories of electronic structure. The most popular among them are the Hartree-Fock method and

density-functional theory, which are discussed below.
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1 Hartree-Fock method

The Hartree-Fock method (Szabo & Ostlund, 1982) results from approximating the electronic wave-

function with a Slater determinant, which respects the anti-symmetric nature of the electronic

wave-function. This approximation is given by,

ψ(x1,x2, ...xN ) = det




ψ1(x1) ψ1(x2) ... ψ1(xn)

ψ2(x1) ψ2(x2) ... ψ2(xn)

. . . .

. . . .

ψn(x1) ψn(x2) ... ψn(xn)




.

This approximation reduces a wave-function in 3N dimensional space to N wave-functions in

3 dimensional space which are computationally tractable. The approximation of the electronic

wave-function by a Slater determinant is equivalent to the assumption that the electrons in the

system interact with each other only through a mean field, thus effectively ignoring the electron

correlations.

The ground-state energy of a material system computed from the Hartree-Fock method provides

an upper bound to the actual ground-state energy of the system. In this regard, the Hartree-Fock

method has a useful variational structure associated with it. Exploiting this variational structure,

the Hartree-Fock method is extended to obtain a more refined electronic structure theory, which is

described by multi-configuration equations. Multi-configuration equations are a generalization of

the Hartree-Fock method, where a linear combination of a number of Slater determinants is used to

approximate the wave-function, as against a single Slater determinant in the case of Hartree-Fock

approximation. It can be shown that as the basis of the single electron wave functions is increased

to span the complete Hilbert space, the multi-configuration equations reproduce the exact quantum

mechanical equations (Friesecke, 2003; Lewin, 2004).

Though the Hartree-Fock approach has been used quite extensively, over the course of last

few decades the density-functional theory (DFT) of Hohenberg, Kohn, and Sham (Parr & Yang,

1989; Finnis, 2003), which expresses the ground-state energy of the material system in terms of

the electron-density, has gained popularity for its accuracy, reliability, and feasibility of electronic

structure calculations on a wide range of materials.

2 Density-functional theory

Density-functional theory provides us with a framework to reformulate the problem of solving the

Schrödinger’s equation of a N-electron system into a problem of estimating the wave-functions and

corresponding energies of an effective single-electron system. Density-functional theory is based
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on a variational formulation, and is therefore very suitable for ground-state calculations, though

extensions to excited states are possible (Parr & Yang, 1989). The heart of density-functional

theory lies in the work by Hohenberg, Kohn, and Sham (Hohenberg & Kohn, 1964; Kohn & Sham,

1965) who prove that “electron-density as a basic variable is sufficient to describe the properties of

a material system in its ground state”. This is a remarkable and powerful statement, as it reduces

the problem of solving for a quantity (electronic wave-function) in 3N dimensional space to solving

for a quantity (electron-density) in 3 dimensional space. This very statement has revolutionized

electronic structure calculations, and has put density-functional theory in the forefront of electronic

structure theories. The fact that the ground-state properties of materials depend only on electron-

density is not difficult to verify. We start from a variational statement: The energy of any system

is always greater than or equal to its ground-state energy. Denoting the ground-state energy by

E0,

〈ψ|H|ψ〉 ≥ E0 . (2)

Combining equations (2) and (1), and representing the kinetic energy of electrons by T and the

interaction between nuclei and electrons by Vext(ri), the variational statement reads as

〈ψ|T +
1
2

N∑

i=1

N∑

j=1
j 6=i

1
|ri − rj | +

N∑

i=1

Vext(ri)|ψ〉 ≥ E0 . (3)

As ψ(x1,x2, ...xN ) is normalized, the electron-density or the probability density of finding any of

the N electrons with arbitrary spin is given by,

ρ(r1) = N

∫
...

∫
|ψ(x1,x2, ...xN )|2ds1dx2..dxN . (4)

Combining equations (2) and (4), and noting that Vext(ri) is a local operator, we get

〈ψ|T +
1
2

N∑

i=1

N∑

j=1
j 6=i

1
|ri − rj | |ψ〉+

∫
ρ(r)Vext(r)dr ≥ E0 . (5)

The last term in equation (5), which is the interaction of the external field with the electrons

in the system, is independent of the electronic wave-function and depends only on the electron-

density. However, the first term, which includes the kinetic energy of electrons and the electron-

electron interactions, depends on the wave-function. This dependence is dropped by defining a new

functional F (ρ), given by

F (ρ) = min
ψ→ρ

〈ψ|T +
1
2

N∑

i=1

N∑

j=1
j 6=i

1
|ri − rj | |ψ〉 , (6)
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where ψ → ρ denotes the minimization over all possible antisymmetric ψ which give rise to a

particular ρ. Thus the ground-state energy, and consequently the ground-state materials properties

depend only on the electron-density. The ground-state energy is given by

E(ρ) = F (ρ) +
∫

ρ(r)Vext(r)dr +
1
2

M∑

I=1

M∑

J=1
J 6=I

ZIZJ

|RI −RJ | , (7)

where the last term in equation (7) is the electrostatic repulsive energy between the nuclei.

Though it has been established that ground-state material properties depend only on electron-

density, the explicit functional form of F (ρ) defined in equation (6) is not known. Density-

functional theory is exact in principle, but the exact evaluation of F (ρ) is tantamount to solving

the Schrödinger’s equation. Hence, the functional F (ρ) is evaluated approximately. An important

step in this direction was taken by Kohn and Sham (Kohn & Sham, 1965) by using the properties

of a reference system of non-interacting electrons with density ρ to write

F (ρ) = Ts(ρ) + EH(ρ) + Exc(ρ) , (8)

where Ts is the kinetic energy of non-interacting electrons, EH is the classical electrostatic inter-

action energy (also referred to as Hartree energy), and Exc denotes the exchange and correlation

energy. Though the exact form of Exc is not known, good approximations of the exchange and

correlation functionals are available using local density approximations (LDA) and generalized

gradient approximations (GGA) (Koch & Holthausen, 2001; Ceperley & Alder, 1980; Perdew &

Zunger, 1981). In the Kohn-Sham scheme of things (KS-DFT), Ts(ρ) is computed in an indirect

approach by observing that the the Euler-Lagrange equations corresponding to E(ρ) under the con-

straint
∫

ρ(r)dr = N are identical to that of a single-electron Schrödinger’s equation in an effective

mean-field. Thus, the problem of computing Ts reduces to solving an eigenvalue problem given by,

(
− 1

2
∇2 + Veff (ρ;R)

)
ψi = εiψi, i = 1, 2, . . . , N (9a)

ρ =
N∑

i=1

|ψi|2, Veff =
∂(Exc + EH + Eext)

∂ρ
, (9b)

where ψis denote the wave-functions or orbitals of a material system with N electrons. Upon

solving equation (9), the kinetic energy term is computed to be Ts(ρ) =
∑N

i=1
1
2

∫ |∇ψi(r)|2dr.
Traditionally equation (9) is solved in a self-consistent manner, since Veff is a functional of ρ,

which in turn is determined from the solution, ψis. The computational complexity involved in this

self-consistent calculation is huge and restricts tractable system sizes to a few hundred atoms. This

limitation has inspired studies on orbital-free forms of kinetic energy functionals, where Ts(ρ) is

modeled.

Numerous efforts have been made to come up with explicit forms of Ts(ρ) without the need
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to compute electronic wave functions; these are called orbital-free kinetic energy functionals. The

version of density-functional theory where Ts(ρ) is modelled using orbital-free kinetic energy func-

tionals is commonly referred to as Orbital-Free Density-Functional Theory (OFDFT). The earliest

of the works in this direction date back to the Thomas-Fermi model proposed in 1927 (Thomas,

1927; Fermi, 1927). Thomas and Fermi derived an explicit representation of the kinetic energy

using a local density approximation. The Thomas-Fermi model approximates the kinetic energy of

a system of non-interacting electrons with that of a homogeneous electron gas and is given by

Ts(ρ) = CF

∫
ρ5/3(r)dr , (10)

where CF = 3
10(3π2)2/3. A major setback to the Thomas-Fermi approach was the Teller non-

bonding theorem for this class of functionals (Parr & Yang, 1989), which showed that the Thomas-

Fermi model does not predict binding in materials. This deficiency was corrected by including in the

kinetic energy functionals a term depending on the gradient of the electron density. This correction

led to a family of kinetic energy functionals called the Thomas-Fermi-Weizsacker functionals (Parr

& Yang, 1989), which are given by the expression

Ts(ρ) = CF

∫
ρ5/3(r)dr +

λ

8

∫ |∇ρ(r)|2
ρ(r)

dr , (11)

where λ is a parameter. Different values of λ are found to work better in different cases (Parr &

Yang, 1989); λ = 1 and λ = 1/9 are the most commonly used values. There have been considerable

efforts (Wang et al., 1998, 1999; Choly & Kaxiras, 2002; Smargiassi & Madden, 1994; Wang &

Teter, 1992) to improve these orbital-free kinetic energy functionals by introducing an additional

non-local term called the kernel energy. These kinetic energy functionals have a functional form

given by

Ts(ρ) = CF

∫
ρ5/3(r)dr +

1
8

∫ |∇ρ(r)|2
ρ(r)

dr +
∫ ∫

f(ρ(r))K(|r− r
′ |)g(ρ(r

′
))drdr

′
, (12)

where f , g, and K are chosen to satisfy known limits of exact Ts(ρ), and such that the total kinetic

energy functional exhibits correct linear response.

To end this overview, I wish to note that KS-DFT is the most accepted electronic structure

theory in the community. Any deviations from KS-DFT, which include the use of OFDFT must

first be tested carefully before using them for quantitative prediction of materials properties.
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